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Abstract

I investigate the optimal design of contracts when agents exhibit probabil-
ity weighting. Integrating probability weighting into a standard moral hazard
framework reveals that optimal contracts should include substantial performance-
insensitive segments. This occurs because these agents overweight the probabilities
of extreme outcomes— the highest or lowest performance levels— and tend to be
overly sensitive to incentives linked to those outcomes, while displaying limited
sensitivity to incentives implemented elsewhere. As a result, contracts that do not
vary with performance over a broad range of performance levels become optimal.
Empirical evidence from a representative sample of American households supports
the model’s prediction: individuals with stronger probability weighting are less
likely to be compensated based on performance. This paper provides a novel expla-
nation for the widespread use of simple and performance-insensitive contracts by

organizations.
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1 Introduction

The moral hazard framework in contract theory studies how a principal can design
incentives to motivate an agent whose actions are unobservable. The contracts it
predicts, however, often diverge from those observed in practice (Lazear and Oyer,
2007; Prendergast, 1999; Salanié, 2003). Notably, the bulk of the literature examines
risk attitudes based on expected utility, which, while theoretically appealing, is not an
accurate description of choice under uncertainty (Starmer, 2000). In what follows, I
investigate whether relaxing the assumption of expected utility maximization improves
the type of contract predicted by the theory.

In particular, I consider agents who exhibit probability weighting, a phenomenon
supported by abundant evidence from behavioral economics (Abdellaoui et al., 2011;
Bruhin et al., 2010; Fehr-Duda and Epper, 2011; Kahneman and Tversky, 1979; 'Haridon
and Vieider, 2019; Tversky and Kahneman, 1992).! These agents deviate from expected
utility because their preferences between risky alternatives are not linear in probabilities
(Abdellaoui, 2000). An assumption that underlies the most prominent alternative
models of decision making under risk and uncertainty, such as rank-dependent utility
(Quiggin, 1982) and cumulative prospect theory (Tversky and Kahneman, 1992). I
incorporate these models within the moral hazard framework in contract theory, thus
bridging the gap between the two literatures.

The main result of this paper is that optimal contracts for agents who exhibit
probability weighting feature substantial performance-insensitive segments. Therefore,
it proposes an explanation for the prevalence of simple and low-powered contracts
observed in practice, such as salaries, lump-sum bonuses, and commissions awarded
only for reaching exceptionally high performance levels. According to the framework
of this paper, such simple contracts emerge because the principal anticipates that
probability weighting will attenuate the agent’s responsiveness to incentives, thereby
reducing the effectiveness of performance-based pay.

I first examine the design of contracts for agents who display probability weighting
due to pessimism or optimism. These agents pay disproportionate attention to unfavor-
able outcomes (low performance levels), in the case of pessimism, and favorable ones
(high performance levels), in the case of optimism. As a result, they overweight the
probabilities of these outcomes and underweight all others. The principal reacts to this
pattern of probability weighting by offering a contract that concentrates incentives at
the performance levels whose probabilities the agent overweights.

In the specific case of a pessimistic agent, the optimal contract concentrates in-
centives at low performance levels. Moreover, since this agent underweights the
probabilities of all other outcomes, that contract must provide a fixed and high pay-

1See Wakker (2010, p. 204) for an extensive list of references.



ment for those realizations. This results in a performance-insensitive segment at the
upper end of the performance set. According to this incentive scheme, commissions
have a cap because offering incentives beyond a certain threshold is ineffective; the
agent does not respond to them.

Importantly, I also find that the stronger the agent’s pessimism is, the larger will
be the performance-insensitive segment included by the optimal contract. This is
because the agent increasingly overweights the probability of obtaining the lowest
performance level, which leads him to more heavily underweight all other probabilities.
Thus, under severe pessimism, the performance segment in which the fixed and high
payment is given expands, making incentive-compatible contracts increasingly costly to
implement. Moreover, I demonstrate that when the cost of inducing high effort exceeds
the corresponding benefits, the principal optimally abandons incentive compatibility.
In such cases, if contracting remains desirable, the principal ends up offering a contract
with a constant payment for all performance levels; in other words, a salary.

Under optimism, the principal offers a contract that provides large transfers only
if the highest performance levels are realized. For all other outcomes, transfers are
substantially lower. This type of incentive scheme, where incentives are concentrated
at high performance levels, resembles a high-performance commission (Joseph and
Kalwani, 1998; Oyer, 2000). Remarkably, when optimism is moderate, incentive-
compatible contracts are unnecessary. This occurs because the agent’s tendency to
overweight the probability of high performance inflates the perceived benefits from
exerting high effort, making the incentive compatibility constraint to be slack at the
optimum. Thus, as optimism becomes less severe, the optimal contract features lower-
powered incentives.

I also consider probability weighting due to likelihood insensitivity (Tversky and
Wakker, 1995; Wakker, 2001). According to this type of probability weighting, indi-
viduals misperceive probabilities due to cognitive and perceptual limitations. These
limitations make individuals insufficiently sensitive to changes in intermediate proba-
bilities, leading them to overweight the probabilities of extreme outcomes, both best
and worst (Wakker, 2010).

In the case of such agents, the principal tends to concentrate incentives at extreme
performance levels while offering minimal incentives in between. Hence, the optimal
contract includes a performance-insensitive segment at intermediate outcomes. That
solution resembles compensation schemes that include both a low-performance lump-
sum bonus, which rewards (or avoids penalizing) the agent for preventing the worst
performance levels, and a high-performance lump-sum bonus. Moreover, as likelihood
insensitivity increases, the optimal contract includes a larger performance-insensitive
segment. Hence, similar to the case of pessimism, stronger probability weighting due to
likelihood insensitivity reduces the effectiveness of incentives, and results in contracts



without incentives over a broader range of performance levels.

I empirically corroborate the theoretical prediction that stronger probability weight-
ing, driven by either more severe likelihood insensitivity or pessimism, decreases
the extent to which contracts depend on performance. To that end, I use data from
the American Life Panel, a representative sample of American households that are
regularly surveyed. Specifically, I combine data from the incentivized experiment
conducted by Dimmock et al. (2021), which elicited respondents” probability weighting
functions, with data from the survey of Maestas et al. (2023), which records the type
of compensation respondents receive in their current job. These data allow me to
examine the relationship between the strength of probability weighting and the extent
to which compensation is performance-based. Consistent with the model’s predictions,
I find that individuals exhibiting more severe probability weighting, due to pessimism
and insensitivity, are on average less likely to be paid with contracts that depend on
performance.

The paper concludes by discussing several extensions to the theoretical model.
Some of these extensions examine the impact of other deviations from expected utility,
such as loss aversion and ambiguity attitude, on optimal contracting. With these,
I provide a comprehensive account of optimal incentives without expected utility.”
Importantly, these extensions demonstrate the flexibility of the model, as it can easily
incorporate these phenomena, and the generality of its predictions, since qualitatively
similar results are obtained. The remaining extensions are technical, and show that the

main theoretical results hold when some assumptions of the model are relaxed.

2 Related literature

This paper contributes to the contract theory literature by proposing a solution to the
paradox put forward by Salanié (2003), which suggests that the complex solutions
predicted by theory do not align with the simplicity of contracts observed in practice. I
demonstrate that incorporating probability weighting into a canonical principal-agent
model yields contracts that do not depend everywhere on performance optimal. This
feature of the solution generates simpler and more realistic contracts. For instance,
when individuals are overly pessimistic the resulting contract can involve a salary, and

when they are likelihood insensitive, the optimal contract includes lump-sum bonuses.”

21 do not discuss deviations from expected utility due to violations of transitivity such as preference
reversals (Lichtenstein and Slovic, 1971). The most prominent theories of risk developed to capture those
behaviors, such as regret theory (Loomes and Sugden, 1982), assume that agents evaluate probabilities
accurately, in stark contrast to this setting, but that they suffer from a “distortion of utilities”, which calls
for an entirely different framework of analysis.

3In Online Appendix B, I show that when overly pessimistic agents are also loss averse, then the
optimal contract becomes a salary and a lump-sum bonus for high performance. This is consistent with



These two contracts are among the most popular compensation practices.

I also contribute to the behavioral contract theory literature, which incorporates
behavioral biases such as loss aversion, dynamic inconsistency, and biased beliefs into
principal-agent settings (see K&szegi, 2014, for a review). I focus on incorporating
probability weighting in a setting of moral hazard. To the best of my knowledge,
I am the first to do so. This feature is reminiscent of Spalt (2013) who shows that
when agents exhibit cumulative prospect theory preferences it is first-best optimal to
use stock options. I find a similar result in which the optimal contract offered to
likelihood-insensitive agents can exhibit an option-like shape. However, the analysis of
Spalt (2013) is extended in several ways: by considering the case in which the incentive
compatibility constraint is binding; by examining the impact of other types of probability
weighting, such as those caused by pessimism and optimism; by not restricting the
analyses to a parametric form of utility and probability weighting; and by extending
his results to a setting of ambiguous probabilities.

The model also demonstrates that the main findings of De La Rosa (2011) and
Santos-Pinto (2008) extend to a setting of probability weighting. Specifically, I show
that the principal can exploit optimistic agents by overpaying high performance levels
and underpaying all other outcomes. This intuition is similar to what De La Rosa (2011)
and Santos-Pinto (2008) find for overconfidence and positive self-image, respectively.
However, I also demonstrate that this intuition does not necessarily apply to pessimism
and likelihood insensitivity, which are the empirically prevalent forms of probability
weighting (Fehr-Duda and Epper, 2011; Wakker, 2010). In the case of pessimism, the
technical requirement that the optimal contract be monotonic prevents the principal
from offering the highest transfers for the lowest performance levels; the outcomes this
agent overweights the most. As a result, the principal must seek alternative, often more
costly, methods to incentivize the agent, which may sometimes compromise incentive
compatibility. Thus, an important insight of the present paper is that pessimism cannot
be as easily exploited as optimism. For likelihood insensitivity, a similar difficulty in
providing incentives arises at low output levels, which are also overweighted by the
agent.*

The closest related works are Gonzélez-Jiménez (2024a) and Gonzélez-Jiménez
(2024b). The former paper demonstrates that agents exhibiting probability weighting
can be optimally incentivized through stochastic contracts, which introduce additional
risk beyond that inherent in performance. This study complements his findings in two

the result of Herweg et al. (2010). However, I show that this result does not hold when pessimism is not
severe, or when individuals exhibit other types of probability weighting, such as optimism or likelihood
insensitivity.

4This model also differs from De La Rosa (2011) and Santos-Pinto (2008) in that it relies on weaker
assumptions as it does not require heterogeneous priors between the agent and principal to generate
optimistic attitudes. In the model, probabilities are objectively known to both principal and agent, which
disregards, by construction, the formation of heterogeneous priors.

4



key ways: (i) by providing empirical evidence from a representative sample that prob-
ability weighting is associated with contracts that are performance-insensitive rather
than riskier; and (ii) by identifying the theoretical conditions under which deterministic
contracts may be preferable for the principal. The latter result is presented in Online
Appendix D. Furthermore, Gonzélez-Jiménez (2024b) examines the optimal design of
incentives when the agent exhibits loss aversion. I extend his analysis by characterizing
optimal contracts in the presence of both loss aversion and probability weighting. No-
tably, incorporating loss aversion into the framework of this paper expands the range
over which the optimal contract is performance-insensitive, making the predictions of

the model more realistic. This result is presented in Online Appendix E .

3 Theoretical Framework

3.1 The General Setup

Consider a principal (referred to as she/her) who can hire an agent (referred to as he/him)
to perform a task. The agent’s action consists of exerting effort on the task e, which can
take two values {e, e}. Exerting effort generates a disutility equal to c¢(e). Specifically,
it is assumed that a high level of effort, ¢, is costly to the agent c(é) = ¢, with ¢ > 0,
whereas choosing the low effort entails no cost, ¢(¢) = 0. In Online Appendix D, I relax
the assumption that effort is binary and show that the main results of the model can
hold in a more general setting in which e is continuous and c(e) is a strictly convex
function.

Output from the task is denoted as ¢ and is also referred to as performance. Through-
out, I assume that output is stochastic. Hence, ¢ is a random variable that can take any
value in the compact interval [g, ¢]. Moreover, both principal and agent know that ¢ is
distributed according to the conditional distribution function F'(g|e), which admits the
probability density f(qle).

The relationship between output and effort is assumed to be governed by the

monotone likelihood ratio property (MLRP, henceforth):

Assumption 1. The MLRP states that §- (;gg}g) <0.

The MLRP implies that high-output realizations are more likely to be drawn from
the distribution of output when the agent’s level of effort is high than when it is low.
Consequently, observing output realizations allow the principal to infer the agent’s
likely action: higher performance level constitutes clearer evidence that the agent has
exerted high effort.

To convince the agent to work on the task, the principal offers a take-it-or-leave-it
contract that specifies a transfer schedule ¢(g). Throughout, it is assumed that the

5



principal has the following utility:

() = [ (S(a) = ta) dF(gle),

where S(q) is a captures the principal’s benefit from output. That function is assumed
to exhibit S" > 0, 5" < 0 for all ¢, and S(g) = 0. Importantly, the model focuses on a
setting in which the principal is interested in eliciting a high level of effort. Accordingly,
it is assumed, wherever possible, that the expected benefit from obtaining that level of
effort outweighs its expected cost, namely the expected transfer paid to the agent when
effort is high.

The timing of the interaction between agent and principal is as follows. First, the
principal offers the contract to the agent. If the contract is accepted, then the agent
proceeds to choose e. Subsequently, g is realized and the agent’s transfer is determined
by the schedule ¢(q). Alternatively, if the contract is rejected, the interaction between
the parties immediately ends, and each is left with their reservation utility. I denote the
agent’s reservation utility as U > 0.

Furthermore, I assume that the transfers specified in ¢(¢) are assumed to be mono-
tonically increasing in output:

Assumption 2. The contract t(q) exhibits t(q2) > t(q1) for any q2,q1 € [q,q] such that
42 > q1-

Besides the well-known motivations for assuming monotonocity, this property has
two novel implications that are relevant to the incentive design problem considered
in this paper.” First, it guarantees that principal and agent share the same ranking of
performance outcomes; that is, both prefer higher performance levels to lower ones.
This alignment allows us to focus on the relevant setting in which the principal lever-
ages the agent’s probability weighting to extract higher output. Notice that otherwise,
we would be in a setting in which probability weighting gets in the way of the princi-
pal’s objectives. Second, monotonicity prevents the agent from engaging in hedging
behavior, which would disregard probability weighting as a valid representation of the
agent’s preferences. Specifically, hedging would violate the condition of rank-tradeoff
consistency (also known as comononotonicity) (Abdellaoui, 2002; Wakker, 2010), which
is a key axiom for the models that I use to characterize preferences with probability
weighting.

The transfers specified in ¢(q) enter the agent’s utility through the function u, about
which I make the following assumption:

>One of the standard motivations for monotonicity is that it ensures that the agent does not engage in
sabotage. Notice that otherwise, he would be incentivized to destroy output with the aim of claiming
the highest transfer included in the non-monotonic contract. This justification is also applicable in the
current setting.



Assumption 3. The consumption utility function v : Ry — Ry is twice continuously
differentiable and exhibits u(0) = 0, v’ > 0, u” < 0, and —Z—/,/ < Bfor B < 4.

The consumption utility function, also known as the von Neumann-Morgenstern
utility function, exhibits the standard property of diminishing returns, i.e. v’ > 0 and
u” < 0, which generates a risk-averse attitude in an expected utility framework.

Under the aforementioned assumptions, the agent’s preferences can be written as:

E(U(te)) = [ u(t(q)) dF(gle) — c(e). (1)

‘Q\Q\

To remain consistent with standard notation in the literature, I work throughout with
decumulative probabilities. Thus, a probability in this model refers to the likelihood of
obtaining a realization better than a given performance level @ € [q, ¢]. Formally, let a
probability be p = 1 — F'(Q|e) for any e. This alternative representation of probabilities
has no impact on the solution to the incentive design problem. To see this, note that the
agent’s preference in equation (1) is equivalent to the following representation in terms

of decumulative probabilities:®

E(U(te)) = [ u(tg))d(1 - F(gle)) — c(e). )

»Q\\IQ

3.2 Probability Weighting Functions and Rank-Dependent Utility

When the agent perceives probabilities accurately, expected utility theory (EUT, hence-
forth) presented in equation (2), captures his preferences. In contrast, I relax this
assumption by allowing the agent to exhibit probability weighting. I model this feature
by means of a probability weighting function, w, that transforms probabilities p. The
following assumptions are imposed on w:

Assumption 4. The probability weighting function w : [0, 1] — [0, 1] is twice continuously
differentiable, and fulfills the following conditions:
i) w(0)=0and w(l) =1,
ii) w'(p) > 0 forall p € (0,1);
iii) For some p € [0,1], w"(p) < 0if p € [0,p) and w"(p) > 0if p € (p,1];
i) If p =1, then lim,_,o+ w'(p) = +o00 and lim,,_,;- w'(p) = 0;
v) If p =0, then lim,,_,o+ w'(p) = 0 and lim,_,,- w'(p) = +oo; and

SFor further clarification, let 1, g2 € [g, q] with ¢» > ¢1. Notice that,

" 4F(gle) = Flaale) = Flasle) =1 — Flasle) — (1= F(gale)) = | d (1= F(gle).

q1 q2



vi) If p € (0,1), then lim,, o+ w'(p) = +o0 and lim,_,,- w'(p) = +oo.

The probability weighting function maps the unitary interval onto itself and is
continuous and increasing. It has at least two fixed points: one at impossibility (w(0) =
0), which corresponds to the probability of obtaining a realization better than the highest
output level, and one at certainty (w(1) = 1), which corresponds to the probability of
obtaining a better or equal realization than the lowest output level.

Moreover, the probability weighting function has an inflection point denoted by p
that crucially determines its shape. When p = 0, the function is convex everywhere.
That shape, along with the fact that decumulative probabilities are being transformed,
implies that large probabilities—the probabilities of low performance levels— receive
larger weight than small probabilities—the probabilities of high performance levels.
Figure 1a presents an example of a convex weighting function. In contrast, when p = 1
the probability weighting function is concave everywhere. That shape implies that
small probabilities—those associated with high performance levels— receive larger
weight than large probabilities—those associated with low performance levels (Figure
1b). Finally, when p € (0,1), the function exhibits an inverse-S shape (Figure 1c).
In this latter case, the agent assigns large weights to small and large probabilities,
the probabilities of extreme performance levels, while assigning similar weights to
the probabilities of intermediate output levels. Notably, the latter shape implies the

existence of an interior point p € (0, 1) where w(p) = p.”

Figure 1: Examples of probability weighting functions

w(p) p w(p)

(a) Pessimism (b) Optimism (c) Likelihood insensitivity
Note: Dashed lines represent accurate perception of probability.

The preferences of an agent who exhibits probability weighting are characterized by

"The seemingly drastic assumptions of extreme sensitivity to almost-certain and almost-impossible
realizations, i.e. lim,_,;- w'(p) = oo and lim,,_,o+ w’(p) = oo, are incorporated in the most prominent
proposals of parametric forms of probability weighting functions, such as those of Prelec (1998), Tversky
and Kahneman (1992), and Goldstein and Einhorn (1987). Furthermore, these assumptions have relevant
implications for the results that are formalized in Online Appendix A .



rank-dependent utility (RDU, henceforth):

RDU(t,e) = [ u(t(q)) dw(1 — F(qle)) — c(e). 3)

Q‘\'Q

RDU generalizes EUT by applying probability weighting to the decumulative func-
tion 1 — F'(q|e). Thus, for a given outcome, () € [g, q], and a given effort level, ¢’ € {e, e},
the agent considers the probability of obtaining a higher outcome, which is 1 — F'(Q|¢),
but this probability is perceived as w (1 — F(Qle¢ )) Accordingly, when an outcome that
is infinitesimally worse than () is taken as benchmark, obtaining () implies a marginal
difference in perceived probabilities captured by the expression d (w (1 — F(Ql¢ )))
Notice that this expression is the differential of the integral in (3) when ¢ is replaced
by Q. Therefore, the rank-dependent functional given in (3) implies that the utility
derived from an outcome (), u(t(@)), is weighted by its contribution to the perceived
probability d <w (1 — F(Qle ))), and all such weighted utilities are summed over the
set of all possible performance levels ¢ € [g, ].

Notably, under RDU, the agent’s risk attitude is jointly determined by the curvature
of the functions v and w. The influence of the curvature of u on risk attitude is common
to EUT and RDU. However, the influence of the curvature of w on risk attitude is
exclusive to RDU and is referred to as probabilistic risk attitude (Wakker, 1994). It
captures the influence of deviations from expected utility in decision making under
risk. The aim of this model is to establish how this novel source of risk attitude affects

optimal contracting in a moral hazard setting.

3.3 The Principal’s Problem

When facing an agent with preferences described by equation (3), the principal’s
problem consists of implementing a contract that is accepted by the agent, a condition I
refer to as participation constraint (PC, henceforth), that incentivizes him to exert high
effort, a condition I refer to as incentive compatibility constraint (IC, henceforth), and
that satisfies the monotonicity constraint from Assumption 2 (M, henceforth). Formally,

her program is:
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t(q2) > t(q1) for all g2, q1 € [g, q] such that ¢» > ¢ M)

The program described in (4) indicates that the principal, as it is standard in the
moral hazard literature, is assumed to be fully informed about the agent’s preferences.
Consequently, she designs a contract that fully incorporates that information in order to
elicit a high level of effort. In Online Appendix D, I examine how the optimal contract
would change if this assumption were relaxed. This alternative analysis aligns better
with empirical research showing significant variability in RDU preferences over time
(Kilka and Weber, 2001; Rottenstreich and Hsee, 2001; Zeisberger et al., 2012), which
suggests that the assumption of the principal knowing the agent’s preferences may be
overly restrictive. Notably, I find that similar contracts emerge in that setting.

Moreover, the program in (4) also assumes that the RDU agent cannot “debias”
himself by interpreting the contract offered by the principal as a signal of his probability
weighting. One possible interpretation of this assumption is that the agent is naive
about the dynamic inconsistency caused by probability weighting (Barberis, 2012; Ebert
and Strack, 2015). Specifically, while the agent may initially plan to reject a contract that
signals that he suffers from probability weighting, he deviates from this plan because of
his misperception of probabilities and accepts such a contract.” Another interpretation
of this assumption is based on the well-known property that probability weighting
prevents the agent from performing backward induction (Karni and Schmeidler, 1991;
Machina, 1989). Thus, he is unable to understand the reasoning that the principal
used to design the contract, which relies on backward induction: first account for
the influence of the agent’s probability weighting on the effectiveness of incentives to

subsequently structure a monotonic contract that ensures participation and incentive

81f the agent were sophisticated about his dynamic inconsistency, he would reject any contract that
provides clear evidence of his susceptibility to probability weighting. A way to overcome this rejection
would be to employ a mixed strategy that makes the agent indifferent to accepting or rejecting the
contract (Henderson et al., 2017). I focus on naive agents and pure strategies, making this approach
inapplicable to my framework.

“This scenario can arise when the agent, prior to receiving the contract, believes that the principal
will exploit his probability weighting with probability s € [0, 1]. If this probability is sufficiently high,
the agent may be inclined to reject any contract offered. However, after receiving the offer ¢(y), he
might accept the contract if the expected benefits of accepting it, given by (1 — s) fyy d(1— F(ylé)), are

sufficiently overweighted.
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compatibility.

3.4 The Weighted Monotone Likelihood Ratio Property

Before presenting the optimal contract for RDU agents, I introduce a crucial assumption
for the theoretical analyses presented below. Notice that while the agent is aware of the
relationship between performance and effort (Assumption 1), his probability weighting
leads him to evaluate this relationship differently. Specifically, he adjusts the ratio

. w’ | 1—-F(qle) . . . .
;(qH by the factor <7q‘) Therefore, changes in the likelihood ratio
e w (1-r ()

flale) s
HeD) might be

v (1-ra10)

w (1-Fe)
Throughout, it is assumed that regardless of the agent’s probability weighting, he

misperceived, as they are accompanied by changes in the weighting ratio

still perceives that choosing high effort increases the probability of obtaining a high
performance level more than the probability of obtaining a low performance level.
w (1-F(alo)) f(ale)

w (1-F (@) ftalo

version of the MLRP as the Weighted Monotone Likelihood Ratio Property.

Hence, the ratio decreases with performance. I refer to this alternative

Assumption 5. The W-MLRP states that:

da (w’(l - F(Q|§))f(€l|_€)) 0
dg \w'(1-Fale)f(ae))

forall g.

The W-MLRP rules out situations where, due to probability weighting, the agent
erroneously believes that low effort is more likely to lead to high output than high effort.
Thus, it ensures that the agent’s perceived relationship between effort and performance
remains directionally consistent with the standard MLRP. As a result, solutions with
significant deviations from standard optimal contracts—such as non-monotonicities
that make the M constraint bind—cannot be attributed to probability weighting causing
fundamental reversals in perceived signal informativeness.

I assume that the principal internalizes Assumption 5. Hence, not only she knows
the actual relationship between effort and outcome probabilities (Assumption 1), but
also knows how the agent perceives that relationship. Moreover, she uses this knowl-
edge to design incentives optimally. In particular, the principal avoids implementing
incentives at performance levels whose associated probabilities the agent underweights.
There, he perceives that high effort only slightly increases the likelihood of achieving a
higher outcome. In those cases, signals about the agent choosing high effort are weak

and seemingly uninformative, making incentive provision costly. Instead, the principal
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targets performance levels whose associated probabilities the agent overweights. In
these segments, the agent perceives that high effort substantially increases the chances
of achieving a high performance, resulting in seemingly informative signals about his
action. Therefore, the principal implements incentives at these performance levels to
effectively motivate the agent.

The following two lemmas highlight some properties of the W-MLRP. The proofs of
the main results of the paper are presented in Online Appendix A.

Lemma 1. The W-MLRP implies:
(D) w(1 - F(qle)) > w(1 - F(gle)) for all g;
(ii) the MLRP if w'(1 - F(q|e)) > w'(1 - F(qle))-

Lemma 2. If the MLRP holds and

w”(1 - F(gle))
w' (1 - F(qle))

holds for all q, then the W-MLRP must hold.

The W-MLRP implies first-order stochastic dominance (Lemma 1 (i)). Also, consis-
tent with the previous explanation of how the principal implements incentives, the
W-MLRP is not a generalization nor a special case of MLRP. There are performance
segments in which the W-MLRP implies the MLRP, but other segments in which the
W-MLRP is implied by the MLRP (Lemma 1 (ii)). Specifically, when the marginal weight
of the probability generated by e exceeds that of the probability generated by e, the
agent’s probability weighting generates the perception that higher performance levels
are more informative about high effort than they actually are. At the performance levels
in which that condition holds, the W-MLRP implies the MLRP. However, since the
derivative of w must be on average one—i.e. [, w'(p)dp = 1—this condition cannot hold
for all probabilities, and thus for all g. As a result, there must be performance segments
in which the W-MLRP does not imply the MLRP, and the informativeness of higher
performance realizations is lower than under accurate perception of probabilities.

Furthermore, Lemma 2 shows that the W-MLRP can be implied by the standard
MLRP when the curvature of w is restricted. In particular, when the agent’s probability
weighting function is more convex at the probability associated with low effort than
at the probability associated with high effort, the MLRP can imply the W-MLRP." As
will be discussed in the next section, this condition is related to how pessimistic or
optimistic the agent is at the probabilities induced by his actions. Accordingly, the

5 < o' (1-F(a1e)) )
19This requirement on the shape of w ensures that the derivative %jma) is nonincreasing. As
a result, the agent’s probability weighting does not reverse or counteract the MLRP.
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agent must be more pessimistic (optimistic) about the probabilities generated by low
effort (high effort), and such pessimism about low effort implies the MLRP. Throughout,
I will assume that the W-MLRP holds. However, note that thanks to this lemma, the
results of the model can be obtained under more standard assumptions, provided this
restriction on the convexity of the probability weighting function is satisfied.

3.5 The General Solution to the Principal’s Problem

The results presented in this section are essential for understanding the solution to the
principal’s problem when the agent suffers from probability weighting. They show that
the shape of the probability weighting function crucially influences the maximization
problem, and, consequently, the type of solution that applies. The following proposition
states that the monotonicity constraint is slack at the optimum when the probability

weighting function is everywhere concave.

Proposition 1. Suppose that Assumptions 1-5 hold and that the PC and IC constraints bind.
The M constraint is slack for all q if and only if w”(p) < 0 for all p € [0, 1]. The same result is
obtained if the IC is not included in the principal’s program.

The result in Proposition 1 implies, via complementary slackness, that the opti-
mal contract is strictly increasing for all ¢ if and only if the weighting function is
everywhere concave. What remains to be established are the conditions under which
the monotonicity constraint binds. These conditions are presented in the following

corollary.

Corollary 1. Suppose that Assumptions 1-5 hold and that the PC and IC constraints are
binding. The M constraint binds if

W= F@) o d w' (1= F(qle)) f(gle)
w/(l_F<q|é))f(Q| ) > —pw'(1 = F(qle)) O (w,(l_F<q|é)>f(q|é) :

where p is the lagrangian multiplier of the IC constraint. Moreover, if the IC is not included in

. . ’ . e w"(1—F(qgle _
the principal’s program, this condition becomes 11;/((177“(3\'@)))) f(gle) > 0.

When the IC constraint binds (x > 0) and the agent’s probability weighting function
is convex (w” > 0), the M constraint binds at performance levels where the marginal
weight w'(p) becomes sufficiently small. At those performance levels, the right-hand
side of the inequality stated in Corollary 1 becomes negligible, while the left-hand side
remains large.!! Consequently, by complementary slackness, the optimal contract must

flatten out at those output realizations.

Lemma A4 in the Online Appendix D shows that when the weighting function is convex, then

. w'’ (1—-F(qle
limgq Sri=Fraley) = +0°
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We are now in a position to describe how the problem presented in Eq. (4) is solved
using Proposition 1 and Corollary 1. The solution proceeds in the following steps. First,
I compute the solution from the first-order approach to the principal’s problem without
the M constraint, which I refer to as the solution to the “unconstrained” problem.
Second, Proposition 1 establishes that this unconstrained solution is optimal when the
weighting function w(p) is everywhere concave, or when that function is convex but
w'(p) remains sufficiently large. However, if w(p) is convex and w'(p) is sufficiently
small, Corollary 1 states that the optimal contract must be flat over the performance
segment where these conditions met. In such cases, the solution to the relaxed problem
is replaced by a constant transfer equal to the payment specified by the unconstrained
solution at the lower boundary of the segment.

Importantly, Proposition 1 and Corollary 1 also apply when the IC constraint is not
included in the principal’s program. Therefore, this way of finding a solution can be
used to characterize optimal contracts when the IC does not bind at the optimum.

4 Pessimism and Optimism

This section examines the optimal design of contracts when the principal faces two
specific types of RDU agents: pessimists and optimists. These agents exhibit probability
weighting generated by motivational factors (Wakker, 2010).

4.1 Definitions

Pessimists pay more attention to unfavorable outcomes (i.e., low performance levels)
than to favorable ones (i.e., high performance levels) (Wakker, 2001).'* This pessimistic
attitude toward risk is included into the model by means of a convex probability
weighting function, which assigns greater weight to a probability if its associated with

a lower performance level.

Definition 1. Pessimism is characterized by a probability weighting function w(p), defined
in Assumption 4, with the additional restriction that p = 0. Therefore, lim,,_,o+ w'(p) = 0 and

lim, ;- w'(p) = +o0.

Pessimism generates probabilistic risk aversion, as it leads the agent to assign excessive
weight to the probabilities of worst outcomes and insufficient weight to those of higher

outcomes.

12According to (Wakker, 2010), this attitude may stem from an irrational belief that unfavorable
outcomes are more likely to occur, leading to an unrealistic overweighting of their probabilities. Alterna-
tively, if probability weighting is interpreted normatively, Wakker (2010) notes that this attitude can also
be due to a conscious and deliberate focus on unfavorable outcomes in decisions, without overestimating
their likelihood.
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By contrast, optimists pay more attention to favorable than to unfavorable out-
comes (Wakker, 2001). This attitude is reflected in a concave probability weighting
function, which assigns greater weight to a probability if it is associated with a higher

performance level.

Definition 2. Optimism is characterized by a probability weighting function w(p), defined in
Assumption 4, with the additional restriction that p = 1. Therefore, lim,, o+ w'(p) = +o00 and

lim, ;- w'(p) = 0.

Optimism generates probabilistic risk seeking, as it leads the agent to assign excessive
weight to the probabilities of best outcomes and insufficient weight to those of lower
outcomes. However, this optimistic attitude does not necessarily imply that the agent is
risk seeking overall, since the curvature of the utility function © may induce sufficient
risk aversion so as to offset the risk-seeking behavior generated by the probability
weighting function w.

We are interested in investigating how more severe pessimism and optimism influ-
ence the optimal contract. The following definition from Yaari (1987) provides a formal
basis for understanding varying degrees of pessimism and optimism.

Definition 3. Agent i is more pessimistic (resp. optimistic) than agent j if w; = 0 o w;, where
w; and w; are the probability weighting functions corresponding to agent i and j, respectively,
and 0 : [0,1] — [0, 1] is a twice continuously differentiable, strictly increasing, and convex

(resp. concave) function.

A probability weighting function that is more convex than another generates
stronger pessimism because it causes the agent to assign larger weights to the probabil-
ities of lower performance and smaller weights to the probabilities of higher perfor-

mance. The reasoning is analogous for concave probability weighting functions.

4.2 Optimal contracts under Pessimism

We can now proceed to analyze the optimal contracts given to RDU agents with
pessimism or optimism. The following proposition describes the properties of the
contract that solves the principal’s problem when the agent is a pessimist.

Proposition 2. Suppose that Assumptions 1-5 and pessimism hold. The optimal contract,

t2(q), is increasing in q up to some threshold qr € (g, q) after which payment is constant in q.

When the agent is pessimistic, the optimal contract includes incentives only at
low performance levels. Specifically, the contract specifies larger transfers to reward
higher performance at the lower end of the output interval, while being performance-
insensitive elsewhere. These incentives, along with the agent’s overweighting of the
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Figure 2: [llustration of Propositions 2 and 4.

t t
————

lirs q q

(a) Optimal contract under pessimism (b) Optimal contracts under optimism

Note: The red dotted lines represent contracts when the IC constraint is slack at the optimum and blue
solid lines represent contracts when the IC is binding.

probabilities of low performance levels, motivate him to choose a high level of effort.
An example of this contract’s shape is presented in Figure 2a.

I now use Definition 3 to examine the effect of stronger pessimism on the contract
from Proposition 2.

Corollary 2. An increase in the degree of pessimism, in the sense of Definition 3, enlarges the

segment q € [qz, q| for which the contract t52(q) (Proposition 2) is constant in q.

Stronger pessimism leads the principal to increasingly concentrate incentives at
lower performance levels while avoiding them in the remainder of the performance
space. Consequently, the optimal contract depends less on performance. Importantly,
this increased performance insensitivity of the optimal contract entails a cost for the
principal, as she must pay a high and fixed transfer over a larger performance segment.

The following result formalizes this observation.

Corollary 3. The principal experiences a profit loss from offering a contract that is monotonic
and incentive-compatible to the pessimist, and this loss increases with the agent’s degree of
pessimism.

An implication of Corollary 2 is that an overly pessimistic agent requires an optimal
contract in which rewards and punishments are concentrated in a narrow output subset
in the neighborhood of ¢q. According to Corollary 3, such a contract may be overly
costly because a large and fixed transfer must be paid in the remainder of the output
space. The question then arises as to whether the principal can afford to implement
incentive-compatible contracts for all levels of pessimism. The following proposition

demonstrates that severe pessimism can undermine incentive compatibility.
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Proposition 3. Suppose that Assumptions 1-5 and pessimism hold. Then, there exists a level of
pessimism at which the principal chooses not to implement a high level of effort and the optimal
contract is a salary that gquarantees participation. Agents who are more pessimistic than that
level, in the sense of Definition 3, are also offered such a contract.

As mentioned above, agents with acute pessimism require excessively costly incen-
tives to be motivated. Proposition 3 demonstrates that these costs cannot be outweighed
by the benefits of implementing high effort, leading the principal to optimally abandon
incentive compatibility. If she still chooses to contract under these conditions, because
the benefits of participation counteract the costs, the optimal contract would consist of
a fixed payment to ensure participation; in other words, a salary."

Propositions 2 and 3, and Corollary 2 offer an explanation for the prevalence of
performance-insensitive contracts in organizations based on pessimism. Specifically,
Proposition 3 suggests that severe pessimism can account for the prevalence of salaries
in organizations (Lazear and Oyer, 2007; Salanié, 2003)."* Moreover, these theoretical
results are consistent with two key empirical findings. First, that highly risk-averse
individuals are more likely to work under contracts that are not contingent on perfor-
mance (Dohmen et al., 2011; Grund and Sliwka, 2010), and tend to select occupations
with lower earnings variability (Bonin et al., 2007). Second, that individuals who are
more risk-averse and pessimistic about their own performance opt for contracts with
lower-powered incentives (Larkin and Leider, 2012).

4.3 Optimal Contracts under Optimism

Let us now turn to the case of optimism. The following proposition characterizes the
solution to the principal’s problem when the agent is an optimist.

Proposition 4. Suppose that Assumptions 1-5 and optimism hold. There exists a unique
threshold cost level ¢o > 0, such that:
i) If ¢ < ¢o, the IC constraint is slack at the optimum and the optimal contract 1 (q) is
everywhere increasing in q.
it) If ¢ > Co, the IC constraint binds at the optimum and the optimal contract t5(q) is
everywhere increasing in q but exhibits higher (resp. lower) transfers relative to 1} (q) at
high (resp. low) output levels.

In the case of an optimistic agent, the IC constraint may be slack at the optimum.
This occurs because the optimal contract without the IC constraint specifies transfers

13Notice that if the principal decides against contracting under such conditions, due to the high costs
associated with failing to elicit high effort, the model characterizes the interesting scenario in which
the agent’s probability weighting leads to the collapse of a contracting relationship that would have
otherwise occurred.

14n Section 7, I discuss how this result can be further reinforced using ambiguity aversion, a form of
pessimism towards events of unknown probability relative to events in which probabilities are known.
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that increase in performance, and although these incentives are weak, they suffice to
motivate the agent. Specifically, the relatively high transfers offered for the highest
performance levels, combined with the agent’s tendency to overweight the probability
of achieving those outcomes, convince him that exerting high effort is profitable. In this
case, the optimal contract is given by Proposition 4 i).

However, when the cost of exerting high effort is sufficiently high, the incentives
provided by the contract from Proposition 4 i) become insufficient. In this case, the
optimistic agent requires a contract with higher-powered incentives, and the IC con-
straint binds at the optimum. A contract with stronger rewards for achieving high
performance levels, when combined with the agent’s optimism, increases the perceived
benefits of exerting high effort and thereby offsets its elevated cost. Hence, in such a
case, the resulting optimal contract is characterized by Proposition 4 ii). An illustrative
example of the two contracts described by Proposition 4 is presented in Figure 2b.

The following comparative static result is useful in understanding the effect of

stronger optimism on the optimal contract.

Corollary 4. An increase in the degree of optimism, in the sense of Definition 3, reduces the set
of costs (0, éo) for which the contract, t1(q) (Proposition 4 i)) is optimal.

Stronger optimism makes the lower-powered contract from Proposition 4 i) less
often optimal. The agent’s increased overweighting of the probability of high perfor-
mance levels can lead him to erroneously conclude that such outcomes can be achieved
even with low effort. That mistaken conviction makes it necessary for the principal to
offer stronger incentives, such as those included in the contract described in Proposi-
tion 4 ii), to ensure that the perceived benefits of exerting high effort remain sufficiently
attractive to the agent.

Proposition 4 and Corollary 4 offer an explanation for the empirical finding that
risk-loving individuals tend to choose higher-powered incentive schemes, even when
doing so reduces their expected earnings (Bellemare and Shearer, 2010; Larkin and
Leider, 2012). Furthermore, Corollary 4 correctly predicts the empirical regularity that
the power of incentives will increase with the individuals” optimism (Humphery-Jenner
et al., 2016; Larkin and Leider, 2012). Moreover, as it will be further explained below,
these results account for the tendency of optimistic individuals to accept contracts
with lower average pay (Sautmann, 2013). Otto (2014) shows that such exploitation of
optimism occurs in the contracts of CEOs, thus providing empirical evidence of the
model’s predictions outside the lab.

Furthermore, the theoretical results under optimism are also consistent with the
findings of De La Rosa (2011) and Santos-Pinto (2008), who incorporate overconfidence
and positive self-image, respectively, into principal-agent frameworks. Thus, the
present analysis demonstrates that the results of those models extend to a setting in
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which the agent exhibits probability weighting due to optimism. This is not a trivial
finding, as probability weighting and overconfidence represent different psychological
phenomena (Abdellaoui et al., 2023). Probability weighting reflects risk attitudes,
whereas overconfidence may stem from biases in beliefs due to incorrect updating—
the explanation given by De La Rosa (2011) and Santos-Pinto (2008)) for biased beliefs in
their models. In a setting with given probabilities, such as the one that is considered in
this paper, beliefs about probabilities do not play any role. This distinction underscores
that similar contractual outcomes can emerge from different behavioral assumptions.
To conclude this section, I compare the transfers specified in the contracts from
Propositions 2 and 4 ii) to the classical solution of Holmstrom (1979), which I denote by
t5%,. Recall that this classical solution to the standard principal-agent problem specifies

transfers that strictly increase everywhere in performance.

Corollary 5. Let ¢* € (q,q) be the unique output level that satisfies w (1 — (q*|é)) =1
Then,
i) tSb(q) (Proposition 4 ii)) offers lower transfers in q € [q,q*) and higher transfers in
€ (q*, q| relative to t3%,;.
ii) tSb(q) (Proposition 2) offers higher transfers in q < [q,q") and lower transfers in q €
ql

(¢

While the contracts given to optimistic and EUT agents are qualitatively similar, i.e.

relative to t32;(q).

both contracts specify transfers that increase in performance, they impart incentives
differently. In particular, the contract targeting the optimist offers lower transfers at
low performance levels and higher transfers at high performance levels relative to the
classical solution. Hence, the principal exploits optimism by overpaying performance
levels whose probabilities the agents overweights and by underpaying lower but likely
realizations of output. As discussed previously, this feature of the contract is essential
to motivate the optimist.

5 Likelihood insensitivity

This section investigates the optimal design of contracts when the principal faces agents
who suffer from probability weighting due to likelihood insensitivity.

5.1 Definitions

Likelihood insensitivity represents the cognitive and perceptual limitations that pre-
vent individuals from accurately distinguishing between probabilities (Tversky and
Wakker, 1995; Wakker, 2001, 2010). An agent with likelihood insensitivity exhibits

extremity-oriented behavior; he assigns small weights to probabilities of intermediate
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outcomes and large weights to the probabilities of extreme outcomes (highest and low-
est performance levels) (Baillon et al., 2023). This yields an inverse S-shaped probability

weighting function, which is depicted in Figure 1c.

Definition 4. Likelihood insensitivity is characterized by a probability weighting function
w(p), as defined in Assumption 4, and with the additional restriction of p = p = 0.5. Thus,

lim, o+ w'(p) = +o0 and lim, ,;- w'(p) = +o0.

According to Definition 4, likelihood insensitivity is characterized by a probability
weighting function with an interior fixed point at p = 0.5."° This implies that the agent
tends to evaluate probabilities of intermediate outcomes simplistically, treating them as
roughly “50-50” (i.e. either the event happens or it won’t) (Wakker, 2010). As a result,
the probabilities near the extremes—very high or very low performance levels—are
systematically overweighted.

The following definition, based on Baillon et al. (2025), provides a formal basis
for understanding varying degrees of likelihood insensitivity. It will enable us to
investigate how a contract must be adjusted as a result of more severe likelihood

insensitivity.

Definition 5. Agent i is more likelihood-insensitive than agent j if w;, = ¢ o w; where w; and
wj are their respective probability weighting functions, and ¢ : [0,1] — [0, 1] is a probability
weighting function with likelihood insensitivity in the sense of Definition 4.

A probability weighting function with a more pronounced inverse-S shape, i.e.
shallower at intermediate probabilities and steeper at extreme probabilities, generates
stronger likelihood insensitivity. Such a function causes the agent to assign less weight
to probabilities of intermediate output levels while assigning more weight to extreme

probabilities.

5.2 Optimal Contracts under Likelihood Insensitivity

The following proposition characterizes the optimal contract offered to the likelihood-

insensitive agent.

Proposition 5. Suppose that Assumptions 1-5 and likelihood insensitivity hold. Then there
exists a unique threshold cost level, ¢;, > 0, such that:
i) If ¢ < ¢r, the IC constraint is slack at the optimum and the optimal contract, t1(q), is
constant up to the unique threshold § € (q, q) after which pay is increasing in q.
ii) If ¢ > ¢y, the IC constraint is binding, and the optimal contract, tgj(q), is either every-
where increasing in q and increases more steeply at extreme values of q; or

15Recall from Assumption 4 that j is the interior fixed point that results from the inflection point
being interior.
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iii) it pays a constant amount for some finite, fixed, and compact interval, but above and
below that interval pay is steeply increasing in q.

Proposition 5 i) states that the IC constraint may be slack at the optimum. The
rationale for this result is analogous to that given for Proposition 4 i); the agent’s
overweighting of the probabilities of high performance levels, combined with a contract
that provides low-powered incentives at those levels, suffice to convince him that
exerting high effort is profitable. Moreover, because the agent is relatively insensitive to
changes in the probabilities of intermediate performance levels, the resulting contract
takes the form of an “option-like” incentive scheme: it is flat over low and intermediate
performance levels but increases with performance at the high end of the output space.’®

This result echoes the finding of Spalt (2013), according to which an option-like
contract is first-best optimal under prospect theory preferences. However, Proposition 5 i)
offers new insights. First and more importantly, it extends Spalt (2013) by showing that
this result can hold in a moral hazard setting. Second, it shows that such a contract
shape is due to the overweighting of small and large probabilities caused by likelihood
insensitivity. Third, because loss aversion has so far not been introduced into the
model, I demonstrate that this bias is not responsible for the option-like contract shape
described in Proposition 5 i). Finally, this contract emerges without making assumptions
about the functional form of probability weighting or consumption utility.

Proposition 5 ii) and iii) show that when the cost of choosing the high level of
effort is sufficiently high, i.e. ¢ > ¢;, the incentive compatibility constraint binds at
the optimum. The principal must offer a contract with higher-powered incentives,
compared to those specified in the contract from Proposition 4 i), to convince the agent
that exerting a high level of effort pays off despite its elevated costs. Given the agent’s
probability weighting, the most cost-effective way to achieve this motivation is by
concentrating these incentives at extreme output levels—the performance levels whose
probabilities the agent overweights. Thus, the resulting contract can be either increasing
everywhere, like the contract described by Proposition 5 ii) and depicted in Figure 3a,
or performance-insensitive at intermediate performance levels, like the contract with
bonuses at extreme performance levels described by Proposition 5 iii) and depicted in
Figure 3b. The principal’s choice between these two types of contracts depends on the
agent’s degree of likelihood insensitivity, as will be discussed below.

Let us turn to examine the influence of stronger likelihood insensitivity on the
second-best contract. The focus is on the case in which the incentive-compatibility
constraint is binding at the optimum.

Corollary 6. Assume that the IC constraint is binding. If agent i is more likelihood insensitive

16The term “option-like” was first used by De Meza and Webb (2007) to describe contracts with this
shape, as they resemble the profit profile of a “call option.”
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Figure 3: [llustration of Proposition 5.

t t

q q

(a) Contracts under moderate insensitivity (b) Contracts under strong insensitivity

Note: The red dotted lines represent first-best contracts and blue solid lines represent second-best
contracts.

than agent j, then the contract, t5° (Proposition 5), offered to i has a larger performance segment
in which pay does not depend on performance.

The principal responds to the agent’s reduced sensitivity to the probabilities of
intermediate output levels by increasingly minimizing the implementation of incentives
in that segment. Consequently, incentives are more concentrated at extreme output
levels. This creates incentive schemes with a performance-insensitive segment at
intermediate output levels, as in the contract from Proposition 5 iii). Such a contract,
which offers bonuses at extreme performance levels, is well-suited for agents with
strong likelihood insensitivity, as their distorted perception of probabilities renders
incentives at intermediate performance levels inefficient and wasteful for the principal.

Corollary 6 also implies that the performance-insensitive segment of the optimal
contract must shrink as the agent becomes less likelihood-insensitive. Thus, an incentive
scheme that is everywhere increasing would be effective in the case of an agent with
modest likelihood insensitivity, since his slight probability weighting does not prevent
him from responding to incentives over the entire output space. He is thus offered the
contract described by Proposition 5 ii).

Proposition 5 and Corollary 6 provide a novel justification for contracts with
performance-insensitive segments based on likelihood insensitivity. This theoretical
prediction is supported by empirical findings. Previous studies have found that likeli-
hood insensitivity is negatively correlated with measures of cognitive ability such as IQ
and GPA (Choi et al., 2022; Dimmock et al., 2021; ’'Haridon and Vieider, 2019). More-
over, (Curme and Stefanec, 2007) and (Dohmen et al., 2011) find that individuals with
lower cognitive ability are less likely to be remunerated with performance-contingent
incentives.

These results can also be related to the classical literature on contract theory. The flat
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segment of the contract from Proposition 5 iii) is reminiscent of the pooling that occurs
in adverse selection models with countervailing incentives (Jullien, 2000; Lewis and
Sappington, 1989; Maggi and Rodriguez-Clare, 1995), though it stems from different
factors in this framework. In those models, this pooling arises because more efficient
agents have higher outside options and require stronger incentives. As a result, inter-
mediate types simultaneously wish to mimic an efficient type, in order to receive a large
transfer, and an inefficient type, in order to save on costs. This behavior makes pooling
optimal for the principal when dealing with intermediate types (Laffont and Martimort
(2002)[Ch.3.3]). In this framework, however, the flat segment at intermediate output
levels arises due to likelihood insensitivity, which makes implementing incentives at
those output levels ineffective.

6 Empirical Evidence

The theoretical framework developed in the previous sections yields more specific
predictions when combined with stylized facts about probability weighting. The
common finding from controlled laboratory experiments is that most individuals
exhibit probability weighting due to pessimism and likelihood insensitivity (Fehr-Duda
and Epper, 2011; Wakker, 2010). Accordingly, Propositions 2, 3, and 5 predict that agents
are given contracts that are either fully performance-insensitive or include substantial
segments in which pay does not depend on performance. Moreover, the model also
predicts that the extent to which the offered contracts are performance-insensitive
increases with the worker’s likelihood insensitivity and pessimism (Corollaries 2 and
6).

In the following, I use data from the American Life Panel (ALP) to evaluate the
model’s prediction that stronger probability weighting due pessimism or likelihood
insensitivity, leads to compensation modalities that depend less on performance. The
ALP is a representative sample of American households that is regularly administered
surveys. I primarily use data from two surveys. First, the incentivized experiment
conducted by Dimmock et al. (2021), who elicited the probability weighting functions
of respondent.s The original goal of this experiment was to analyze the relationship
between household portfolio diversification and probability weighting. Second, I draw
on the data from the survey on American Working Conditions which was conducted in
2015 by Maestas et al. (2023). These data contain, among others, information about the
type of compensation given to respondents at their current job.

Dimmock et al. (2021) elicited probability weighting functions of each respondent
using the method of Abdellaoui (2000). That method has the ability to elicit the utility

and probability weighting functions in a non-parametric way. This is achieved by
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implementing a set of binary lotteries that keep probabilities fixed, in order to elicit
utility function curvature, and another set of binary lotteries that keep outcomes fixed
and vary probabilities, in order to elicit probability weighting function curvature.
Therefore, these data successfully identify these two components of risk attitude in the
case of RDU preferences.

A disadvantage of Dimmock et al. (2021)’s elicitation in the context of the present
study, is that it confounds probability weighting due to likelihood insensitivity with
probability weighting due to pessimism/optimism. To deal with this limitation, I fit
the respondent’s answers to the questions designed to elicit probability weighting
functions to the parametric from of probability weighting due to Chateauneuf et al.
(2007). Formally, for each respondent 4, the following function is estimated:

0 if p=0,
w(pij) =1 ¢ + s -pi; ifp e (0,1), 5)
1 ifp=1.

where the index j represents the questions designed to elicit probability weighting.

Equation (5) demonstrates that Chateauneuf et al. (2007)’s proposal is a linear
approximation of probability weighting, where deviations from EUT arise from the
weights assigned to extreme events. Although this function does not satisty all the
properties stated in Assumption 4, it is recommended over other parametric forms of
probability weighting for constructing indexes of likelihood insensitivity and pes-
simism/optimism because its parameters have a clean and simple interpretation
(Wakker, 2010). Specifically, Chateauneuf et al. (2007)’s proposal cannot comply with
Assumption 4 iii) since it exhibits w”(p) = 0 for all p. Consequently, pessimism and
likelihood insensitivity are not captured through a convex, or an inverse-S shape of the
weighting function. Instead, these phenomena are directly reflected in the magnitudes
of s; and ¢;, as will be explained below.

To estimate the parameters ¢; and s; in (5) I used non-linear least squares, a method
that has been widely used to estimate the parameters of the probability weighting
function (Abdellaoui et al., 2011; Baillon et al., 2018a; Dimmock et al., 2021). Importantly,
the resulting estimate §; in (5) captures the respondent i’s likelihood insensitivity
(Wakker, 2010). In particular, the closer §; is to 0, the more insensitive the respondent
is to changes in interior probabilities, and, conversely, a value of §; closer to 1 implies
a perception of probabilities closer to EUT. Thus, I use throughout —3; (if §; < 1) asa
continuous index of likelihood insensitivity that I refer to as “Insensitivity.” Notice that
higher values of this index imply stronger likelihood insensitivity. Figure 4a provides
an illustrative example of how this index captures likelihood insensitivity.

Furthermore, the expression 20%, which depends both on ¢; and s;, measures the
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Figure 4: Examples of neo-additive probability weighting functions
p w(p) —
/7 l—c—s /7

C

(a) Likelihood insensitivity (b) Pessimism (c) Optimism

Note: Black curves represent probability weighting functions. Blue lines represent their corresponding
linear approximations. Dashed black lines represent accurate perception of probability.

extent to which ¢ exhibits pessimism (Wakker, 2010). That expression compares the
extent to which a respondent overweights probabilities associated to the worst outcome
(due to pessimism) to the extent to which they overweight probabilities associated to
the best outcome (due to optimism)."”. Figures 4c and 4b illustrate how Chateauneuf et
al. (2007)’s proposal captures the overweighting of those probabilities. Consequently,
higher values of 2t reflect stronger pessimism. Throughout, I refer to this continuous
index of pessimism as “Pessimism.”

Apart from probability weighting, I also estimate each respondent’s utility func-
tion. The survey questions designed to elicit utility curvature are used to estimate the

following functional:

w(zg) =z ", (6)

where the index k represents the questions designed to elicit utility curvature. The
parameter v; is estimated using non-linear least squares, and is performed jointly, i.e.
as part of the same procedure, as the estimation of parameters of probability weighting.

Table 1 presents descriptive statistics of ¢; and $;. The results indicate that respon-
dents exhibit likelihood insensitivity on average since the mean value of §; is less than
1. They also exhibit pessimism on average, since 1 — ¢; — §; < 1 holds for the mean
values of ¢ and §;. Figure 5 illustrates the average probability weighting function and
corroborates that the average respondent suffers from probability weighting due to
pessimism and insensitivity.

These findings are further corroborated by analyzing the estimates at the individual

level. A majority of respondents, 2012 out of 2640 (approximately 76% of respondents),

17As p approaches 1 the weighting function becomes w(p) ~ 1 — ¢ — s. In contrast, as p approaches 0,
it becomes w(p) ~ c. Hence, comparing a respondent’s level of pessimism to his level of optimism is
equivalent to computing the difference (1 — ¢ — s) — c¢. Under EUT, that difference is equal to 0. Thus,
(1—c—s)—c=0<% 2c+s =1 Theindex 25 is a linear transformation of that equality
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Table 1: Estimates of the Probability Weighting Function

Chateauneuf et
al. (2007)
Si é;
Mean | 0.594 0.028
25th perc. | 0.257 -0.118
50th perc. | 0.611 0.001
75th perc. | 0.891 0.056
St. Dev. | 0.358 0.067
N 2640 2640

This table presents the descriptive
statistics for estimates of probability
weighting obtained at the respondent
level when the parametric form due to
Chateauneuf et al. (2007), is assumed:

0 ifp=0,
w(pi;) = ci+si-pi; ifpe(0,1),
1 ifp=1.

The coefficients ¢; and s; were esti-
mated using non-linear least squares.

Figure 5: Average Probability Weighting Function using Chateauneuf et al. (2007)

19 ’

w(p)

Note: The blue lines represent the average probability weighting function in the sample while the dashed
lines represent the accurate perception of probabilities benchmark.
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exhibit §; < 1, which indicates likelihood insensitivity. Furthermore, a majority of
respondents, 1872 out of 2640 (approximately 70% of respondents), exhibit 1 —¢;—5; < 1,
which indicates pessimism. These results are consistent with previous experimental
tindings (Abdellaoui, 2000; Abdellaoui et al., 2011; Bruhin et al., 2010; 'Haridon and
Vieider, 2019).

A subset of these respondents also answered questions regarding the type of com-
pensation received in their current job. These questions allow me to investigate the
relationship between incentives and the previously described indices of pessimism and
likelihood insensitivity. Specifically, the analyses include the following variables: “Base
Salary” measuring if the respondent’s compensation is a fixed amount regardless of per-
formance; “Piece rate or Productivity”, which captures whether the respondent is paid
according to a piece rate or productivity payments; “Commissions”, which indicates
if the respondent reports being paid commissions for achieving a quota; “Company
Performance”, representing whether the respondent receives payments based on the
performance of the company; and “Performance Pay”, capturing if the respondent’s
compensation consisting of piece rates, productivity payments, commissions, or pay-
ments based on the company’s performance. This last variable summarizes the extent
to which the respondent receives compensations based on performance.

Table 2 presents the descriptive statistics of these variables. The results indicate
that a majority of respondents receive earnings that are not based on performance.
Specifically, 78 % of respondents report receiving a compensation consisting exclusively
of a fixed salary, while only 18% report having earnings based either on piecerates,
productivity payments, commissions, or their company’s performance. These results
are consistent with previous findings in the literature, which suggest that individuals
are frequently compensated through simple contracts that are far less performance-
sensitive than standard theory would predict, often taking the form of fixed salaries
(Lazear and Oyer, 2007; Prendergast, 1999; Salanié, 2003).

Table 2: Descriptive Statistics of Self-Reported Compensation Types

Variable Type Mean Median St. Dev. N

Base Salary Binary 0.785 1 0.411 1313
Performance Pay Binary 0.180 0 0.385 1308
Piece rate or Productivity Binary 0.036 0 0.186 1256
Commissions Binary 0.017 0 0.129 1300
Company Performance Binary 0.147 0 0.354 1275

This table presents descriptive statistics for the variables that capture the respondents’
self-reported compensation modality.

Each variable representing the type of compensation received by the respondents is
regressed on the indexes of probability weighting. The advantage of running separate
regressions, where each variable presented in Table 2 serves as the dependent variable
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in turn, is that they capture different dimensions of performance-based pay. Hence, this
approach offers insight into the specific contexts where the predictions of the theory
can be validated. For example, Piece rate or Productivity and Company Performance
capture different ways of compensating performance; the former focuses on an individ-
ual and absolute measure of performance while the latter focuses on the organization’s
performance, which might be less relevant for the purposes of this paper.

In all regression specifications, I control for the respondents’ utility curvature to
isolate the effect of probabilistic risk attitudes on the type of compensation. This ap-
proach is consistent with the model’s prediction, as an empirically relevant relationship
between probability weighting and incentives must emerge above and beyond the
average influence of utility curvature. Moreover, in some specifications, I include other
control variables that might moderate the relationship between probability weighting
and performance compensation, such as the respondent’s age, gender, ethnicity, level
of education, income, and type of work.

Table 3 reports the marginal effects of Probit regressions. The results presented in
columns (1) and (2) indicate that stronger pessimism is associated with a significantly
higher average probability of being compensated with a salary. In particular, a small
increase in the pessimism index is associated with a 37% average increase in the
probability of receiving only a salary. Consistent with this finding, the estimates in
columns (3) and (4) show that stronger pessimism significantly reduces the average
probability of being compensated according to performance. Moreover, columns (5) to
(10) show that this negative effect of pessimism on performance-based compensation
arises both for compensation tied to individual performance and for compensation
contingent on the company performance. Importantly, these relationships remain
statistically significant even after the inclusion of control variables. Thus,, the results
are overall consistent with the model’s prediction that greater pessimism is associated
with a broader use of performance-insensitive contracts.

Furthermore, the estimates reported in Table 3 indicate that greater likelihood
insensitivity is associated with a significantly lower average probability of being com-
pensated based on performance. Specifically, small increase in the index of likelihood
insensitivity is associated with a 26% average decrease in the probability that compen-
sation depends on performance. Notably, this effect holds for the variables Piece Rate
or Productivity and Commissions, which capture payment according to individual
performance, as well as for Company Performance, which captures payment based
on organizational performance. Hence, when interpreted as affecting the extent to
which the contract of the average respondent depends on performance, these results
are consistent with the model’s predictions and suggest that such a contract becomes
considerably less performance-contingent as the agent exhibits more severe likelihood

insensitivity.
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It should be emphasized that another interpretation of these results is that stronger
likelihood insensitivity leads to a higher proportion of respondents receiving contracts
that are entirely performance-insensitive. However, the theoretical framework cannot
accommodate this interpretation, as the optimal contracts under likelihood insensi-
tivity depend on performance at least at the most extreme performance levels. Thus,
alternative explanations may be required to reconcile this interpretation of the empir-
ical findings with the theory. For example, greater insensitivity might be associated
with other behavioral biases, such as ambiguity aversion and loss aversion, which—as
shown in Online Appendix C—can rationalize this result. Alternatively, greater insen-
sitivity might strengthen limited liability constraints, inducing the principal to forgo
implementing incentives even at extreme performance levels.'®

All in all, the empirical evidence is consistent with the predictions of the model.
The empirically-relevant components of probability weighting, likelihood insensitivity
and pessimism, significantly decrease the probability that compensation depends on
performance. Thus, probability weighting emerges as a novel and empirically validated
explanation for the widespread usage of performance-insensitive and simple contracts

by firms and organizations.

7 Extensions

In this section, I briefly discuss some extensions of the theoretical framework and
describe how they can easily be accommodated in the model. The section has two
parts: the first primarily focuses on preferences and incorporates other deviations from
expected utility, such as loss aversion and ambiguity attitudes, into the model; the

second examines robustness.

7.1 Preferences
7.1.1 Reference Dependence and Loss Aversion

I enrich the agent’s risk preferences by considering Cumulative Prospect Theory (CPT
henceforth; Tversky and Kahneman, 1992). The main departure of CPT from RDU is
that the agent evaluates the transfers in a contract relative to a reference point R > 0,
which can change across different decisions (Wakker, 2010). Transfers that fall below
this reference point are considered losses, while those above it are considered as gains.

18 Another possible explanation is that, when insensitivity is sufficiently pronounced, the principal may
attempt to concentrate incentives around the performance thresholds ¢ and g. However, since achieving
these performance levels is highly unlikely, these incentives may appear excessively extreme—leading to
the abandonment of incentive compatibility altogether.
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For the sake of brevity, the detailed results of the analyses are relegated to Online
Appendix B. The main finding of this extension is that the optimal contract consists
of two parts. The first, located at the lower end of the output space, involves a fixed
transfer equal to the agent’s reference point. This payment protects the agent from
losses when poor performance is realized. The second, which applies in the remainder
of the output space, is fully determined by the shape of the probability weighting
function, and will have the same shape as one of the contracts presented in Sections 4
and 5. As a result, the optimal contracts derived from this extension are similar to those
in the standard model, with the key difference that they contain a larger performance-
insensitive segment. A feature that make these theoretical predictions even more

realistic and closer to the contracts used by organizations.

7.1.2 Ambiguity

The theoretical framework can be easily extended to capture deviations from EUT due
to attitudes toward ambiguity. This can be achieved by considering a setting in which
the distribution F'(¢|e) is unknown to the agent because, for example, he has limited
experience with the delegated task. I characterize the agent’s preferences in this setting
of ambiguous probabilities with Source Theory (Abdellaoui et al., 2011; Baillon et al.,
2025), which, broadly speaking, states that under ambiguity the phenomena of risk
are amplified because there is “additional probability weighting.” Importantly, this
additional probability weighting captures ambiguity attitudes. For example, when it
enhances the weight given to obtaining the lowest performance level and decreases the
weights given to all other events, the individual exhibits ambiguity aversion.

The full discussion of the model with ambiguity is given in Online Appendix C.
The main conclusion of that discussion is that ambiguity attitudes due to ambiguity
aversion or a-insensitivity (the analogue of likelihood insensitivity under ambiguity)
generate larger segments in which the optimal contract is performance-insensitive.
Again, this feature makes the theoretical predictions more realistic and closer to the

contracts used by organizations in real-life.

7.2 Robustness
7.2.1 Continuous effort

In Online Appendix D, I solve a version of the model in which effort is assumed to
be continuous. Specifically, effort is assumed to be the variable e € [0,¢]. The main
results of this paper emerge in that more general setting under two conditions. First,
the density function must be convex, i.e. Fi..(¢le) > 0, a well-known requirement for
guaranteeing the validity of the first-order approach (Mirrlees, 1999; Rogerson, 1985).
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Second, the probability weighting function must be everywhere convex, and is due to
Gonzalez-Jiménez (2024a). Under these two conditions, the contracts characterized in
Section 4 are optimal and can be obtained with the first-order approach.

The second condition discussed in the previous paragraph is stringent. It implies
that the findings of this paper do not hold when effort is continuous and the agent is
optimistic or likelihood-insensitive. Therefore, I consider weaker requirements in order
to validate the findings of the standard model with binary effort. Lemma D1, presented
in Online Appendix D, shows that a sufficiently convex cost function c(e) can ensure
the validity of the first-order approach even when the probability weighting function
is not convex everywhere. If that is the case, the optimal contracts characterized in
Section 4 and 5 remain valid. Thus, a steeply convex cost function, representing a

demanding task to the agent, validates the results of this paper.

7.2.2 Stochastic contracts

The previous subsection concluded that relaxing the assumption of binary effort can ren-
der the contracts characterized in Sections 4 and 5 suboptimal. In Online Appendix D, I
show that the optimal contracts in this case are stochastic, meaning they include risk
other than that inherent in performance. Those contracts are desirable because the
agent’s probability weighting function is concave over a range of probabilities p € (0, 1),
which induces risk-seeking attitudes. As a result, the optimal contract must incorporate
greater risk than that implicit in the solutions presented in sections 4 and 5. This result
is consistent with the findings of Gonzalez-Jiménez (2024a).

In that Appendix, I extend and complement the findings of Gonzélez-Jiménez
(2024a) by fully characterizing the optimal stochastic contract (r,¢(¢); 1 — r,0). This is
accomplished in two different ways. First, I use the results from a standard model in
which the contract is restricted to be non-stochastic to determine the outcome ¢(g). For
instance, when the agent is optimistic, this outcome corresponds to a contract similar to
that in Proposition 4. Second, I characterize the optimal probability, 7* to be included in
the contract.

7.2.3 Adverse Selection and Moral Hazard

In Online Appendix E, I consider an extension of the model in which the assumption
that the principal knows the agent’s risk attitudes is relaxed. In that extension, the
principal’s goal is dual: to screen agents according to their risk preferences and to
motivate them to exert a high level of effort. I model that setting as a framework of
adverse selection followed by moral hazard.

The analyses in Online Appendix E show that the solution to that more convoluted

problem consists of a menu of contracts with the following properties. First, to in-
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centivize high effort, the contracts in the menu should adopt the shapes described in
Section 5. These incentive schemes ensure high effort when the agent suffers from
probability weighting due to likelihood insensitivity. Second, the menu should include
as many contracts as there are types of agents. In the extension, this amounts to two
contracts: one targeting the EUT agent and the other targeting the RDU agent with
likelihood insensitivity. Lastly, the contract that targets the more efficient type, i.e. the
EUT agent, is enriched with an additional transfer. This monetary incentive ensures that
the EUT agent does not mimic the RDU agent, so as not to miss out on that payment. A
menu of contracts with these properties ensures that agents self-select into the contract
that best fits their risk preference, and that high effort is exerted.

Notice that while this extension only considers two types, its underlying rationale
can be generalized to more complex settings. For example, suppose that the principal
contracts with a continuum of agents who vary in their degree of likelihood insensitivity,
while the principal remains uncertain about each agent’s specific level of insensitivity."
The optimal solution in this case involves offering a menu of contracts, each tailored to
a distinct type of agent. Moreover, the incentives in these contracts should follow the
principles outlined in Proposition 5 and Corollary 6. Specifically, contracts designed for
agents with greater likelihood insensitivity should increasingly concentrate incentives
at extreme output levels. Furthermore, to ensure self-selection, these contracts must
include lump-sum transfers that become larger as the insensitivity of the agent for
whom the contract is intended decreases.

8 Conclusion

This paper examined the impact of probability weighting on optimal contracting in
moral hazard setting. Its main finding is that probability weighting yields optimal
contracts with substantial performance-insensitive segments, and in some cases, con-
tracts that are entirely performance-insensitive. Consequently, the model predicts that
the principal must implement simple, low-powered incentive schemes that resemble
those commonly used by organizations, such as fixed salaries, lump-sum bonuses, and
high-performance commissions. Using data from a representative sample of American
households, I provide empirical support for the model’s prediction that probability
weighting increases the extent to which contracts become performance-insensitive.
Taken together, these analyses highlight probability weighting as a preference-based
explanation for the widespread use of simple contracts.

To make this example more concrete, suppose that the agents” weighting function can be charac-
terized by Prelec (1998)’s functional with w(p) = exp ( — 0.86(—(In(p))®). The principal knows that the
agents” weighting function have that shape and that she contracts with a continuum of agents in the
support a € [0, 1].
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A Proofs of Theoretical Results
[FOR ONLINE PUBLICATION ONLY]

A1 Preliminary Results

A.1.1 Results on the Properties of the Probability Weighting Function at Extremes

w’(p) _

Lemma A1. Iflim,_,+ w'(p) = 400, then lim,,_,o+ w"(p) = —oo and lim, o+ =

—0Q.

Proof. Suppose that lim, o+ w'(p) = 400 but, to set up the contradiction, also that
lim, o+ w”(p) # —oo. Hence, there exists p € (0, 1) such that, for p € [0,p] and B >
0, then w”(p) > —B. Integrating both sides of this inequality over [py,pi] C [0, p]
yields w'(p1) — w'(po) > —(p1 — po)B, and looking at the limit as p, goes to 0 gives

lim,, o+ w'(po) < Bp1 + w'(p1), which contradicts lim, o+ w'(p) = +o00. Hence, it must

be that lim,,_,o+ w”(p) = —o0.
Similarly, suppose that limp_>0+ w'(p) = 400 but that 11mp_>0+ 7é —o0. So for
p € [0,p] and B > 0, then = ( ) > —B. Integrating over [pg, p1] C [O,p] y1elds.
I/ (pr) — In /(o) = In 5P > B, — po)

w'(po)
( ) w/<p1)
exp(=B(p1 — po))

Y

and looking at the limit as py goes to 0 yields lim,,, o+ w'(py) < W) __ Therefore, w'(p)

exp(—Bp1)
must be bounded as well as p approaches 0, which contradicts lim,, ¢+ w'(p) = +00. So
it must be that lim,,_,+ ’1‘1’)','7((5)) = —oo. -

Lemma A2. Iflim, ,;- w'(p) = +o0, then lim,_,;- w"(p) = +oo and lim,, ;- fj,—p) = 4o00.

Proof. Suppose that lim, ,;- w'(p) = +o0 but, to set up the contradiction, also that
lim, ;- w”(p) # +oo. Hence, there exists p € (0, 1) such that, for p € L, 1} and B > 0,
then w”(p) < B. Integrating both sides over [po, p1] C L, 1} and taking the limit as p,
goes to 1 yields lim,, ;- w'(p1) < w'(po) + B — poB, contradicting lim,,_,,- w'(p) = +o0,
so lim,_,1- w"(p) = +o0.

Next, suppose that limpﬁl w'(p) = 400 but that lim,, ,;- = (p) # +oo. Thus, for p €
[p,1] and B > 0, then % ,()
to 1 yields lim,, ;- w'(p1) < exp (B(l —po)) -w'(po), contradicting lim,, ;- w'(p) = 400,

< B. Integrating over [po, p1] and takmg the limit as p; goes

so lim,, ;- ”;”U','((;’)) = 400. [ |
Lemma A3. Iflim, ,;- w'(p) = 0, then lim, ,;- w"(p) < 0 and lim,, ;- Zl,/—((pp)) = —o0.
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Proof. Suppose thatlim, ;- w'(p) = 0but, to set up the contradiction, also that lim,, ;- w”(p) >
0. Forp € [p,1] and B > 0, then w”(p) > B. Integrating over [py, p1] C L, 1} and taking
the limit as p; goes to 1 yields lim,, ;- w'(p1) > w'(po) + B — poB > 0, contradicting
lim,_,;- w'(p) = 0. Therefore, lim,_,;- w"(p) < 0.

Next, suppose that lim, ,;- w'(p) = 0 but that hmp%l— ;é —oo. Thus, for p €

[ ] then % (5)) > —B. Integrating over [pg,p1] C L, } and taking the limit as p;

goes to 1 yields lim, ;- w'(p;) > exp(—B(l — po)) - w'(pg) > 0. This contradicts

hmp—>17 w/(p) = O, SO hmp_>17 Zvullli((pp)) = —0Q. .

Lemma A4. Iflim, o+ w'(p) = 0, then lim,_,o+ w"(p) > 0 and lim,,_,+ Z,,'((I’; )) = +o00.

Proof. Suppose that lim,_,o+ w'(p) = 0but, to set up the contradiction, also that lim,, ¢+ w"(p) <
0. Hence, for p € {0,15] and B > 0, then w”(p) < —B. Integrating over [py, p1] C [0, p]

and taking the limit as py goes to 0 yields lim,, o+ w'(po) > w'(p1) + p1B > 0, contra-
dicting lim,_,o+ w'(p) = 0. Hence, lim,,_,o+ w”(p) > 0.

Next, suppose limp%m w'(p) = 0 but also that lim,, o+ 55 w( 7é +00. So, forp € {0 p}
and B > 0, then = p)) < B. Again integrating over [p,, pl] C [0 p| and taking the limit
as po goes to 0 ylelds lim,, o+ w'(po) > exp(é% This contradicts lim,,_,o+ w'(p) = 0, so
lim,, o+ = ((p)) = +o00. |

A.1.2 Results on Comparative Degrees of Optimism/Pessimism and Insensitivity

Lemma A5. If agent i is more optimistic than agent j, then:

wi(p)  _ wip) _
L w;(p) > w;.(p) vp S (07 1)/
2. wi(p) > w;(p) Vp € (0,1);

3. There exists a unique py, € (0, 1) such that w;(px) = wj(p), this point becomes smaller

the more optimistic i is with respect to j.
If agent i is more pessimistic that agent j, the inequalities in 1. and 2. are reversed, and the
unique point in 3. becomes larger.

Proof. Part 1. If agent ¢ is more optimistic than agent j, w;(p) = H(wj (p)) Note that

w j wj (p)
p = w(p) + —2 (A.1)
wi(p) @ (wj (p)) i) w;(p)
Because 0” < 0, it must be that
_wz (p) > _wj (p) (AZ)

w!(p) _ wj(p)
wi(p) w(p)*

If instead 7 is more pessimistic than j, similar steps lead to
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Part 2. Let py, p; € [0, 1] such that p; > po. Integrate the equation in (A.2) over [po, 1]
to obtain:

7_10;’(3) ds > 71—1%/(8) ds

!/ /
o wi(s) 2o U’j(s)

& —Inwi(p1) + nwi(po) > —Inwj(p:) + Inwj(po)

( ) > ()
1) w;(p1)
(po) w;(po)

Integrating the resulting expression over the range of p, gives:

w;(pl)/w;-(s) ds < w}(pl)/wg(s) ds
& wi(pr)w;(p1) < wj(pr)wi(p1)
w;(p1) _ wi(p)
< wj(pl) ” wi(pl)‘

Integrating again but now over the range of p; gives:
1 1

wi(s) s

wj(s) wi(s)

] ( ds
< Inw(1) — Inw;(p) < lnw](l) — Inw;(po)
).

& w;(p) > w;(p

The step in the last equivalence is due to the fact that py can be any p € [0, 1). Similar
steps lead to w;(p) < w;(p) when i is more pessimistic than j.

Part 3. Suppose that w;(p) < w’(p) for all p € (0,1). From Assumption 4, w;(0) =
w;(0) and w;(1) = w;(1). Hence, f; w wi(p)dp = w;(1) —w;(0) =1 > I w’;(p)dp. Contra-
dicting the assumption that w;(1) = 1. A similar rationale disregards w;(p) > w’(p) for
all p € (0,1). Hence, if w}(p) < w;(p) holds, it must do so for some segment in p € (0, 1).

Let w;(p) := n(wj (p)) where 7 is a concave, increasing, and continuous probability
weighting function. Lemma A1l and Lemma A3 show that lim, ,o+ w'(p) = +00 and

lim,_,;- w'(p) = 0 for a generic weighting function w. The first part of this Lemma

implies that —Z?EZ ; > — ((;) Vp € (0,1). Therefore, w’,(p) tends to infinity faster than
J J
wi(p) as p — 0T,
Assumption 4 states that, under optimism, w'(p) is decreasing and continuous.

(p) e
These properties together wit o i > ——) Vp € (0,1), that w’;(p) tends to infinity

faster than w;(p) as p — 0%, and the fact that lim, ;- w'(p) = 0, imply that there exists
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a unique point p;. € (0, 1) such that w/;(px) = w’(px). For p < py, then w’;(p) > w’(p) but
instead w/;(p) < wj(p) if p > pr.

Next, let w; := 9(w J(p)) where 6 is a concave, increasing, and continuous function.
Thus —“t;é/((g )) > — Z%Ei ; Vp € (0,1) and, using the reasoning given above, w;(p) tends to
infinity faster than w’,(p) as p — 0*. Hence, the point p; € (0, 1) such that w;(p;) = w’;(p)

is such that p; < py. [ |

Lemma A6. If agent i is more likelihood insensitive than agent j then:
wi(p) o _ W) - g wlp) W) -
1. - w(p) w];,(]?) if p<pand o) wi(p). ifp>p;
2. wilp) > w;(p) if p < pand wi(p) < w;(p) if p > p;
3. There exists a unique py, € (0, p) such that wi(px) = w’(py.), this point becomes smaller

the more likelihood insensitive i is with respect to j.
4. There exists a unique p,, € (p, 1) such that wi(pm) = W} (pm), this point becomes larger
the more likelihood insensitive i is with respect to j.

Proof. Part 1. Consider first p < 0.5. Since w;(p) = gb(wj (p)),

w/(p) _ S (w®) o wl)
T ) BT ) &9

Due to ¢” < 0in p < 0.5, it must be that:

1 w”(p) .
wz{ (p) > %

w;(p) w’(p)

A similar procedure gives that stronger likelihood insensitivity implies
p > 0.5.

Part 2. Let py, p; € [0,0.5] such that p; > py. Integrate A )

wi(p) w’(p)

p1—w!(s) p—wj(s) s ol w;(p1) . wi(p1)
/po w(s) d3>/po w,(5) ds <1 (w’~(po)> >1 (w{(p0)>.

7 J

over [po, pi]

to obtain:

Integrating over the range of py, namely [0, p;], gives:

/Op1 wi(p1)w;(s)ds > /p1

| wilpy)wj(s)ds & wj(p)wi(pr) > wilpr)w;(p).

Integrating again, but this time over the range of p; gives:

/0.5 wils) g - /0.5 WiS) g o wi(p) > w;(p)-

w;(s) wi(s)

A similar procedure gives that when 7 is more likelihood insensitive than j in the sense
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of Definition 5, then w;(p) < w;(p) inp > 0.5.
Part 3. Suppose that wi(p) > wj(p) for all p < 0.5. Note that [ wi(p)dp >
Trwli(p)dp < wi(p1) > w;(p1) for arbitrary p; € (0,0.5), which is in line with the
first part of the Lemma. However, we also have that f;?f wi(p)dp > f}?f’ wi(p)dp <
w;(p1) < w;(p1), contradicting the first part of the Lemma. A similar rationale leads to a
contradiction when wj(p) < wj(p) for all p < 0.5 is first assumed. Hence, it must be that
w;(p) > wj(p) for some p € (0,0.5).
Assumption 4 states that w'(p) is decreasing in p < 0.5. Moreover, Lemma A1 shows

that lim, ,o+ w'(p) = +o00. Let w;(p) == n(w]( )), where 7 is an inverse-S probability
w’ ( ) wi(p) .

w ~ ’(p)
this Lemma. Therefore, the functlon w’;(p) tends to infinity faster than w/(p) as p — 0.

wi) o wie)
w’;(p) w] (p)
in p < 0.5, w}(p) tending to infinity faster than w)(p) as p — 0% and the fact that

weighting function. Accordingly,

in p < 0.5 as shown in the first part of

Due to the continuity of w’(p), w'(p) being decreasing in pinp < 0.5, —

lim,_,o5 w'(p) = min{w’(p)}, there exists a unique point p;, € (0, 0.5) such that w’;(py) =
w’(pr). For p < py then w’;(p) > w)(p) but instead w’;(p) < wj(p) if 0.5 > p > py.

Next, let w; := qﬁ(w J (p)) where ¢ is an inverse-S probability weighting function.

wi' (p)
w;(p)
tends to infinity faster than w’;(p) as p — 07, and converges to min{w’(p)} as p — 0.5.

Then, w;(p) is a decreasing function in p < 0.5, exhibits —

Therefore, the point p; such that w;(p;) = w’;(p;) is such that p; < p, < 0.5.

Part 4. Suppose that w;(p) < w}(p) for all p > 0.5. For arbitrary p; € (p,p), I obtain
that p1 wi(p)dp < 1 wi(p)dp < w;(p1) < w;(p1) which corroborates the first part of
the Lemma. However we also have [* wi(p)dp > [ wi(p)dp & wi(p1) < w;(p1),
contradicting the first part of the lemma. We find a similar contradiction w;(p) > w/(p)
is assumed. Hence, it must be that w;(p) < w’(p) holds for some p > p.

Assumption 4 states that w'(p) is increasing in p > p. Moreover, Lemma A2 shows

that lim,, ;- w'(p) = +oo. Let w J(p) = n(w] (p)) where 7 is an inverse-S probability

; (i ; > ((p)) in p > p as shown in the first part of this
]

Lemma. Therefore, w/(p) tends to 1nfm1ty faster than w,(p) asp — 1~

weighting function. Accordmgly,

wie) o vy P
T e W
p > p, lim, 5 w'(p) = min{w'(p)}, and the fact that w)(p) tends to mflmty faster than

Due to the continuity of w'(p), w'(p) being increasing in pin p > p, _

wy(p) as p — 17, there exists a unique point p,, € (0, 1) such that w/;(p,,) = w}(pm). If
P < Pm, then w/;(p) < wj(p). Instead, if p > p,, > 0.5, then wj;(p) > wi(p).
Next, Let w; := ¢(w J(p )) where ¢ is an inverse-S probability weighting function.

wi' (p) ( )

,L(p)
tends to infinity faster than w}(p) as p — 17, and converges to mm{w (p)} asp — 0.5.

Then, w} is an increasing function in p > 0.5, exhibits =

Hence, the point p,, such that w;(p,) = w/;(p,) is such that p,, > p,,, > 0.5.
[ |
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A.2 Proofs of the Main Results

Lemmal

Proof. Part 1. From the definition of the W-MLRP, for all g, ¢; € [g, g] such that ¢; > qo,
we have:

w' (1= F(qole)) f(qole)w’ (1 = F(ale)) f(@]e).  (A4)

Integrating both sides of the inequality with respect to gy, which takes values from ¢ to
q1, gives:

w' (1= Flale)) flarle) [ /(1= Flale)) f(aole) dao <

W' (1= F(ale)) flale) [ w'(1 = Flaole)) f(qle) dao.

"~

After rearranging and using [/ w’(l - F(q0|e))f(q0\e) dgp =1 — w(l — F(qﬂe)), we

obtain:
w(1= Flarle) flaile) _ 1 w(1 = Flale)

w(1= F@lo) fale) ~ 1= w(1 - Flale)

Integrating (A.4) again, but now with respect to ¢;, which takes values from ¢, to ¢,

<

(A.5)

gives:
w(l—Flale)) _ /(1= Flale)) f(ale)
w(l = F(wle)) ~ w'(1 = Fale)) f(ale)

Letting ¢y = ¢1 = ¢ and combining (A.5) and (A.6) yields:

(A.6)

w(l=Flgle)) _1-w(1-Flgle)
w(1—F(gle)) ~ 1—w(1-Flqle))
& w(1-F(ge)) > w(1 - F(gle)),

which proves the first part of the Lemma.
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Part 2. We have:

d (w(l - F(q|§))f(q|§)) _d (w'(l - F<q|g>)) F(qle)
dg \w'(1- F(qle))f(qle)) da\w(1-F(qle)) ) flale) A7)
L W(1=Flao) a ( flgle
w’(l - F(q|é)) dg \ f(qle)

The W-MLRP, & w/(l—F(qlg))f(QI,B)
9\ w(1-rl) sae)

) < 0, and equation (A.7) imply:

o (iran)\
4 (1o (((<())>) "

The MLRP immediately holds if the right-hand side of the inequality in (A.8) is negative.
w’'| 1-F(qle

Since w’ (1 — F(q]e)) > 0, this is true when diq (E(q')g) < 0. That condition can be

"\1=-F(gle)

rewritten as:
w”(l — F(q|é)) w”(l — F(q|§))
w'(1 - F(qle)) w' (1= F(gle))

Note that the inequality in (A.9) can be rewritten again as:

f(qle) <

f(ale). (A.9)

Cdhn(w(1= F(g) _ din(w/(1- F(q!@))).

Al
dq - dq (A.10)
Integrating both sides of the inequality in (A.10) with respect to ¢ gives:
w'(1— Fgle)) > w'(1- F(gle)). (A11)
|

Lemma 2

Proof. Equation (A.8) shows that under the MLRP, (;iq ?EZ} g < 0, it suffices for the
WMLRP to hold if the inequality given in (A.9) holds. The Lemma follows immediately
from that inequality.

The following Lemma will be useful for the proof of Proposition 2.
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Lemma A7. the W-MLRP holds if and only if

(w"(l ~ F(qle))

w' (1 - F(gle))

<
I
N——

- w'(1- Flgle) ) flale) __d f(
f(qle) (1 Flgl0) f(ale) <

Proof. The Lemma follows from equations (A.8) and (A.9) . [ |

<
Q]
N——

Proposition 1

Proof. Denote by t"(q), the solution to the problem in (4) when the constraint (M) is not
taken into account. The proof consists of investigating the conditions under which the
solution to that “unconstrained” problem satisfies monotonicity.

Let v be the Lagrange multiplier of the agent’s PC constraint and p that of the IC
constraint. The Lagrangian of (4) without the (M) constraint writes as:

L(q,t) =(S(q) — t(q)) f(gle)
tu [u<t<q>> (' (1= Flalo) ale) = w'(1 = Flale)) fale)) - ]

v ulel)af (1 - Flao) lale) - 0 - ]
Pointwise optimization with respect to #(¢q) yields:

—f(glé) + p |/ (") (w'(1 = F(gle)) f(qle) — w'(1 = F(gle)) f(gle)))]
+ [ (#(q)w' (1 = F(qle)) f(ale)] =0, (A12)

and, after re-arranging,

(A.13)

1 i (1 w1 F(q!g))f(qlg))
u’(t’"(q))w’(l — F(q!é)) w’(l - F(Q’é))f<9|é) '

Hence, the solution from the first-order approach without the M constraint can be

written as:

t(q) = h (A.14)

1
w’(l — F(q|é)) (V Yo (1 B W'ElF(qg))f(qg)))

w (1-F(@0)) £tale)

where h is the inverse function of /, i.e. h(t) = u'~1(t).
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Concavity of w(p) implies monotonicity. I first assume that w”(p) < 0. Differentiate
the expression in (A.13) with respect to ¢, to obtain:

(@) (- F(gle))
") = ) 1= Py 19

(
w (1= F(gle) w("(q)* d (@'(1=Flale))f(ale)
o u"(t"(q) dg (w,<1_F(q|é))f(q|é) : (A.15)

. w' (1—-F(qle e : s S
Since & (LU=FUDII) < (Assumption 5), u/(1*(q)) > 0, u”(t*(g)) < 0 (Assump-
tion 3), and w'(p) > 0 (Assumption 4), the first and second terms on the right-hand
side of (A.15) must be positive. Hence, w”(p) < 0 = t"'(¢) > 0 for all ¢, which, in turn,

implies t"(q2) > t"(q1) for any qi, ¢> € [g, ] such that ¢, > ¢1.
Monotonicity implies concavity of w(p). Now assume that t"(¢g2) > t"(¢1) for any

@2, q1 € [gq,q] such that ¢, > ¢;. Using equation (A.14) we get:

T T 1
t"(q2) > t"(q1) <h | ] w’(lfF(qz\_e))f(fn\_e)
w (1 — F(Q2|e)) v+p|l— ,(kF(qQ‘é))Jc(qz\é)

w

1
_ w'{1=F(qile) | f(qle)
w’(l—F(q1|e)) v+pll— ( ' )
w (1-F@19) f@le)
Since h is decreasing in ¢, the inequality given above can be rewritten as:

y(w’(l — Flgle)) —w'(1 - F<‘J1’é)))

> h (A.16)

The inequality in equation (A.17) holds when w’(l - F(qﬂé)) > w’(l - F(ql\é)) for
all ¢ and e, which is guaranteed if w”(1 ( — F(qle )) < 0 for any ¢ and e. In that case,

the first expression in equation (A.17) is positive and, because ( :8:?8}3;;53:—3) <0

(Assumption 5), the second expression in that inequality is also positive. Hence,
t""(q) > 0= w"(p) < 0.
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Corollary 1

Proof. We now examine the conditions under which the (M) constraint binds. We do so
by investigating the segments at which ¢"(¢), the solution to the unconstrained problem,

does not comply with monotonicity. To that end, rewrite (A.15) as:

iy L) (w'(L= Flgle)
0 et L (TPl 9
, o d w’(l—F(q!e))f(q!e)))
w' (1 — F(qle))u'(t" — ) A.18
(1= Flgle)) w'(#'(a)) g (w,(l_F(q|e))f(q|e) (A.18)

Since v’ > 0 and u” < 0 (Assumption 3), t"’(¢) < 0 is obtained when:

(T Faigy @) (1= Flgle)) (1 (@) o

w”(1 — e vl o F

w' (1= F(gle))
The M constraint is violated when the inequality given in the equation above holds.

w'(1 — F(q)e)) d (w’(l - F(q:_e fiq\ge;) -

To consider the first-best case (the case without the IC constraint) let 1+ = 0. Equation

(A.19) becomes:
w"(1— F(gle))

w (1= F(q|é))f(q|é) > 0. (A.20)

[
Proposition 2 & Proposition 4

Proof. To solve the problem, I characterize the optimal contract as the solution to the
“relaxed” problem, given by (A.13), when the (M) constraint does not bind according to
Proposition 1 and/or Corollary 1. In contrast, when that constraint binds, the optimal
contract must, due to complementary slackness, flatten out, i.e. exhibit ¢(¢2) = ¢(q1) for
any ¢, ¢; such that ¢ > ¢;.

Part 1. Optimal Contract without the M and IC constraints. Let i = 0. Denote by
t/%(¢) the solution to the problem in (4) without the M and IC constraints. This solution

is derived from (A.12) and can be written as:

1

= . A.21
' (#(q) )w' (1 — F(qle)) (421
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By assumption, «/(t) > 0 and w'(p) > 0, so v > 0. The PC constraint binds at the
optimum.

To investigate the shape of t/°(g), the restiction x = 0 is included in (A.15), giving

' (t(g)) w" (1= F(gle))
' (t%(q)) w'(1 = F(qle))
If the agent exhibits optimism, we have w'(p) > 0 and w”(p) < 0 for all p (As-

sumption 4 and Definition 2). Under these conditions, the right-hand side of (A.22) is
positive, implying that the first-best contract given to the optimist, t})'(q), is everywhere

us:

t(q) = f(qle). (A.22)

increasing in ¢. This is in line with Proposition 1.

If the agent exhibits pessimism, we have w'(p) > 0 and w”(p) > 0 for all p (Assump-
tion 4 and Definition 1). According to the condition in (A.20) from Corollary 1, the
M constraint binds at the optimum for all probabilities. This is evident from equa-
tion (A.22) which is strictly negative, implying that the solution to the relaxed problem
is strictly decreasing in ¢ for all performance levels. Therefore, by complementary
slackness it must be that the optimal contract exhibits #'(¢) = 0 for all ¢.

Part 2. Incentive constraint can be Slack at the Optimum under Optimism Denote
by t**(q) the solution described by (A.13). I first show that ;1 > 0 might not always hold

the optimum. Suppose that 1 = 0. Then t**(q) = t/°(q), where t/%(¢) is the contract
satisfying (A.21).

Optimism Consider the case of an agent with optimism in the sense of Definition 2.
From the complementary slackness condition from i = 0, we get:

[u(tB@)w'(1 - Flale)faleyda — ¢ > [u(thia)w'(1 - Flale) f(ale)da. (A23)
Integration by parts of (3) gives:
u(tf(q) +/u (t5(0)) 2 (@) (1 — F(gle)) dg - e(e),

which is used to rewrite (A.23) as:

‘Q\Q\

o (120 (0 <w(1 ~ F(gle)) w1 - F(q\e))) dg>c (A24)
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According to Lemma 1, the W-MLRP (Assumption 5) implies w (1 - F (q]é)) > w ( 1—
F(q| g)), which, together with téb/(q) > 0 for the optimist (equation (A.22)), imply that
the left-hand side of (A.24) is weakly positive and that the inequality in that equation
can hold.

The remainder of this part of the proof varies c. Notice that these changes affect
t5(q) through the P constraint. Accordingly, smaller values of ¢ leads to higher levels
of t/7(¢q). Notably, in this case, the right-hand side of (A.24) can become larger even
though t2(¢) becomes smaller because v/ is a decreasing function (u” < 0). .

Hence, there must exist a threshold cost ¢ > 0 such thatif ¢ < ¢p, then the inequality
in (A.24) holds and t£(q) = [} (q). On the other hand, if ¢ > ¢y, then the inequality in
(A.24) does not hold and it must be that i > 0. In the latter case, t{(q) satisfies (A.13).

Pessimism Now consider the case of an agent with pessimism in the sense of
Definition 1. From the complementary slackness condition corresponding to ;» = 0 we
get:

[u(t @) = Fal)f(ale)da — ¢ > [u(th(@)u'(1 = Fale) f(ale) da

s u(th (@) - e>u(th (@)

& —c > 0.

The first equivalence is due to ¢}’ being constant in ¢ for pessimism. The last inequality

contradicts the assumption ¢ > 0, so it must be that u > 0 for the pessimistic agent.

Part 3. Shape of the second-best contract The second part of the proof examines the
shape of t**(¢). Consider the derivative t**’(q) given in equation (A.15). We know that
diq (Zig:?g}ggﬁgg) < 0 (Assumption 5), v/(t*°(¢q)) > 0, u”(t**(¢q)) < 0 (Assumption 3),
and w'(p) > 0 (Assumption 4), so the second term on the right-hand side of (A.15)

is always positive. The first term on the right-hand side of (A.15) is identical to the
right-hand side of (A.22), which determined the shape of ¢/°(¢q) and crucially depends
on the shape of w(p).

Optimism Proposition 1 shows that when the agent exhibits optimism (Defini-
tion 2), then t&¥'(¢) > 0 for all ¢. Let us also study the behavior of the contract at the

extremes. From Definition 2 and Lemma A1 we know that lim,,_,o+ va/,'—((pp)) = —00, SO
lim,_;- t&'(q) = 4o0. Furthermore, Definition 2 and Lemma A3 give us lim,_,; - 7;””','((5)) =

—00, 80 lim 4+ t¥(g) = +oo. Contract t{ has high-powered incentives at extremes.
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Pessimism Corollary 1 demonstrates that when the agent exhibits pessimism, the
sign of t%¥'(¢) depends on the size of w'(1 — F(q|é)). When ¢ decreases, w'(1 — F(q|é))
increases; the second term of (A.15) becomes larger and t%'(¢) is more likely to be
positive. The opposite happens when ¢ increases and w'(1 — F(q|€)) decreases; t3¥'(¢) is
more likely to be negative and the (M) constraint is more likely to bind.

To further formalize that contract shape, I study (A.15) at the extremes. I start
with ¢ — ¢. From Definition 1 and Lemma A4, we know that lim, o+ w'(p) = 0 and
lim,,_,o+ N((p)) = +4o00. Since u” < 0, as ¢ goes to ¢ the first term on the right-hand side
of (A.15) goes to —oo while the second goes to 0. Therefore, lim,_,;- t3¥'(¢) = —oc.

Let us now examine whether ¢ ever increases with output; that is, whether 5’ (q) >

0 for any segment in [g, g|, or equivalently, using (A.15), whether

w (1 - F(qlo)/(ale) !
w(1-Fgle))  p(t(q)w(1- F(gle))

holds for some ¢. I use the fact that

d (w(1=F(gle))flale)\ w'(1—-F(gle)[(w"(1-F(gle))
— - —| = - —f(ale)
dg \w'(1—F(qle))f(gle)) w'(1—F(gle) [\ w'(1 - F(gle))
w”(1 = F(gle)) F(qle)
" w (1= Flgle)) 199 ) 5 gle)
d flgle)
34 7(al?) (A.26)
to rewrite the inequality above as:
Flale) [0 (L= Flle) ( I 1)
Fale) [wr (1= rale)) " e o (1= Plaio) 293
w”(1 = Fgle)) d f(qle)
w1 F(gle ))f( dle)| <= dq f(qle)’ (A.27)

From Assumption 4 we know that under pessimism lim, .+ v’ (1 — F(q g)) = +o00.

Further, the MLRP states that & q: - increases as ¢ decreases. Therefore, the quantity

1
' (t(q))w! (1 - Flgle))
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goes to 0 as ¢ goes to ¢. All that is left is

w'(1-F(ge)) - w (1= F(gle)) ) flale) _  d [flgle)
e A ey K

which we know to hold from Lemma A7.

Therefore, there exists an output level ¢z € (g, ¢) such that t52(¢) > 0if ¢ < ¢z and
t5¥(q) < 0 otherwise. This result is in line with Corollary 1, which states that the M
constraint is binding when w”(p) > 0 and w'(p) is sufficiently small. In this specific case
of pessimism, that constraint is binding for the segment ¢ > ¢7. Due to complementary
slackness, the optimal contract must exhibit ¢'(¢) = 0 in that segment.

Denote by £ the optimal solution when the agent is pessimistic. That solution can
be characterized as

. t2(q) f A.13 if ¢ € [q, q7),
t3%(q) from (A.13) evaluated at ¢ = ¢z if ¢ € [qz, q].

[
Corollary 2

Proof. Let agent i be more pessimistic than j. According to Lemma A5 iii), the probabil-
ity p; € (0, 1) such that wj(p;) = wj(p;) increases as i’s pessimism intensifies. Thus, the
segment of probabilities p € (p;, 1] such that the inequality w;(p) > w/(p) holds becomes
smaller.

Let wj(p;) = € > 0 for arbitrary small ¢ > 0. The reasoning given in the previous
paragraph implies that the output level ¢. € [g, ¢] such that w; (1 —F(q. ]e)) = ¢,is located
at a lower output level as i becomes more pessimistic. As a result, the performance
segment ¢ € [¢., ¢], in which the weighting function exhibits w ( 1— F(q|e)> < € becomes
larger. Equation (A.28) shows that this tendency of w}(p) to have a smaller value as
i’s pessimism intensifies, enlarges the segment in which the solution to the relaxed
problem, ¢3¢, exhibits %q(q) < 0. Therefore, the segment ¢ € [¢z, ] over which the M
constraint is binding becomes larger.

[ |
Corollary 3

Proof. Corollary 2 shows that the segment ¢ € [qz, g] where the contract 3% from Propo-
sition 2 is constant becomes larger with stronger pessimism. The constant transfer given
to the agent in that segment is equal to ¢%(gz) (the solution to the first-order condition
in (A.13) evaluated at ¢ = ¢7).
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Notice that at ¢ = ¢z, the contracts t%% from Proposition 2 and ¢3¢ from (A.13) are
identical. However, because 22 < 0, the solution to the relaxed problem ¢3% becomes
smaller for larger values of g. ThlS means that this contract is less costly to the principal
relative to the contract from Proposition 2. Hence, the cost incurred by the principal
from complying with the M constraint is the difference:

7 sb 7sb 7 sb 7sb

[ t(a) — Ea)da = [ t(a) — F(a)da, (A.31)
4q qz

where in the equality in the equation above follows from the fact that {3 (q) = t3(q) for

all [g, ¢z]. The right-hand side of (A.31) shows that higher pessimism, and thus a lower

value of gz, increases the average cost faced by the principal.

Proposition 3

Proof. The objective function of the principal when offering ¢, the solution to the
unconstrained problem, given in (A.13), is:
q

/8@~ @) = 5@ 1@ ~ [ 5 0) - ¥ @Fale)de. (A3

q

where the equality in the equation above follows from integration by parts. In the
model, it is assumed that the principal is interested in eliciting high effort, e. That

assumption can be written as:

- / S'() — 1 () (F(ale) - F(gle))dq > 0. (A33)

The MLRP implies that F'(¢|e) < F'(q|e), which validates the plausibility of the inequal-
ity given in the equation above. Equation (A.33) can be rewritten as:

AL Fale))da + [ (@) (Flale) - Flale)da

+ [ 6(0) (F(alo) - Fale))dg = 0. (A.34)

qz

The first expression in the left-hand side of (A.34) is positive while the second expression

ds
there is negative. Moreover, since, ( )

< 01in q € [qz, q|, the third expression in the
left-hand side of (A.34) is positive and makes the inequality in that equation less
stringent.

Recall that the contract from Proposition 2 exhibits f‘j.f’/(q) = 01inq € [gz,q]- Thus,

when the principal offers that contract, her objective function given in (A.34) becomes:

~ ["8' @) (Flale) ~ Flale))dq + [ # @ (Fale) - Flale)dg = 0. (a35)

q
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The inequality in (A.35) is more stringent than that in (A.34). Hence, the principal
experiences higher costs from implementing 3 instead of ¢.

Next, let 2 := {wl(p), ey W, (p)} be the set of all probability weighting functions
with pessimism. Assume that () is a partially ordered set according to increasing
degrees of pessimism. Thus, for any two w;(p), wi(p) € Qsuchthat1 < j <k <n,it
must be that w;(p) > w(p), which, in line with Lemma A5, means that w; exhibits less
pessimism than wy(p). Notably, the cardinality of that set is n(2) = oo, which reflects
all the positive values that that the second derivative, w"”, can attain.

Corollary 2 shows that the segment ¢ € [¢7, ¢] where the contract 5 is constant
becomes larger with stronger pessimism. Accordingly, for w,(p) € Q2 the performance
level g7 is located in the neighborhood of ¢. In this case ¢3¢ an ¢ are indistinguishable as
the segment in which % is constant is infinitesimal. Thus, in such a case %} is profitable
by definition.

In contrast, for w,(p) € €, the segment in which t% is constant is the largest. In

this case, ¢z is in the neighborhood of ¢. From Definition 1 and Lemma A2 we know
w'(p) _

w'(p)
inequality in (A.35) cannot hold when ¢; — ¢; it is not profitable for the principal to

+00, 50, by equation (A.15), then lim,_,;- %' (q) = +oco. Hence, the

that limp_>1— q—q

implement #{* when the agent’s pessimism is extreme.

The property that n(§2) = oo, together with the aforementioned conclusions that
t5 is profitable for the smallest element of Q2 but not for the largest one, and that the
segment in which #% is constant increases with pessimism (Corollary 2), imply the
existence of a unique element w;(p) € 2 that makes Eq. (A.35) hold with equality.
For all elements w;(p) € €2 such that w;(p) < wi(p), Eq. (A.35) holds for some ¢z > g¢.
Instead, for all elements w;(p) € Q such that w;(p) > w;(p), Eq. (A.35) cannot hold.
For the partition [w;1(p), ..., w,(p)], the principal has no other option than to give up
incentive compatibility.

|

Corollary 4

Proof. The proof consists of two parts. The first one shows that stronger optimism
enlarges the segment [q, ¢*], where ¢* € (¢, q) is a performance level that satisfies
w’ (1 - F(q*]é)) = 1. The second part shows that if ¢ € [q, ¢*], stronger optimism is
more likely to reduce the set (0, ¢o]. These two statements amount to stronger optimism
decreasing the likelihood that t%(¢) = 1} (q).

Part 1. Let agent i be more optimistic than agent j. Accordingly, w;(p) = 6 (wj (p)) for
all p € [0, 1] (Definition 3). Let p;, pr. € (0, 1) be the probabilities guaranteeing w/(p;) = 1
and wj(px) = 1. Notice that lim,_,o+ w;(p) = lim,_,o+ w/(p) = +o00. According to Lemma
A5 1), w! tends to zero faster than w; as p increases. Thus, it must be that p, < p;. This
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implies that the output level ¢* such that v (1 - F (q*|e)) = 1 takes place at a higher
output level when j becomes as optimistic as .

Part 2. Proposition 4 demonstrates the existence of a critical cost level ¢o ;, such that

CO 7j =

o (5@t ) (3 (1= F(@le)) = w; (1= Flglo)) ) dg (A.36)

‘Q\Q\

If i were given the same contract as that given to j, his critical cost level must satisfy:

A

Co,i =

u(%u@ﬁﬁﬂmcwﬁ—ﬁmw»—uxl—F@wn)m; (A.37)

‘Q\Q\

The existence of ¢p; is guaranteed by w; (1 - F(q|é)) > wi<1 - F(q|§)) (Lemma 1) and
télfj,(q) > 0 (Equation (A.22)), both of which imply that the right-hand side of the
inequality in (A.37) is non-negative. As a result, there exists a set ¢ € (0, ¢o;) in which
téb, ; Incentivizes agent i.

Throughout, define wy, w; € [0, 1] to be the probability weights wy = w; (1 — F(q| g))
and w; = w; (1 —F (q\é)) for a given output level ¢. Recall that w; > wy due to Lemma
1. Moreover, notice that in the set ¢ € [g, ¢*], optimism implies wg(l - F(q\e)) < 1.
Recognizing that wé(l - F(q|e)) =0 <wj (1 - F(q|e)))w} (1 — F(q|e)), the inequality

wg(l - F(q]e)) < 1is integrated over [wy, w;] to obtain:

/w1 0'(s)ds < Tds e
wo wo (A.38)

wi(1 = F(gle) = wi(1 = Flgle)) <w;(1 = Flgle)) —w;(1 - Flgle)).

Equation (A.38) together with equations (A.36) and (A.37) imply that ¢p,; < ¢o ; for the
set ¢ € [g, ¢*]. The first part of this proof demonstrated that the set ¢ € [g, ¢*] is enlarged
with higher optimism. Hence, stronger optimism increases the likelihood that the set

¢ < ¢o becomes smaller.
[ |

Corollary 5

Proof. We start by rewriting the first-order condition in (A.13) as:

1

Wf(t}lé) = v/ (1 - F(qle)) f(ale) + pu' (1 = F(gle)) f(ale)

— ' (1= F(qle)) £(qle).
Integrating both sides of the previous equation with respect to ¢ over [g, g], and noting
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that

[ (1= Flale)) flale)dq = 1.
gives us
oo L 1
V= q/w(t‘*b(q))fme) dg = Ee (u’(t“(q))) 5 (A.39)

where [Eg; is the expectation with respect to the probability distribution of ¢ induced
by e. Equation (A.39) shows that v > 0 is the same for agents with different types of
probability weighting functions w.

After plugging (A.39) into (A.13) and multiplying by u(¢**(¢)), we obtain:

pu(t(q))[w' (1= F(qle)) f(qle) —w' (1 - F(qle)) f(ale)]
= f(qle)u(t®(q)) [M —E; (W) w'(1 - F(q|e))] . (A.40)

From the complementary slackness condition associated with 1 we know that:
lj/ (

Therefore, we can rewrite (A.40), after integrating with respect to ¢ over [g, g|, as

u(t*(q)w' (1= F(qle)) f(qle) dg

‘Q\»Q\

- /U(tSb(Q))wl(l — F(qle)) f(qle) dg — c) =0.

MZM%@W<£@>“%@wz») (1~ #tle)| o
_ (ﬁigg m(wgwﬁjw#@mﬁmeﬂwmq
- () ) )

where F; is the expectation as perceived by an agent who suffers from probability
weighting. Since [E; (u(ts”(q))) < Es (u(tSb(q))> under pessimism, and the opposite
under optimism, equation (A.41) implies that up > ppy > 1o > 0, where pp is the
lagrangian multiplier of the pessimist and /.o that of the optimist.
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We again rewrite (A.13) but this time as:

1

m =vw' (1 — F(qle)) +

)

_ ! (1= Flale)) f(gle
- — q|€)>, (A.42)

qle)) f
w' (1 — F(qle)) f(

where ti5, € {t3,t%} and pn.pu € {po,pp}. For the EUT agent, equation (A.42)

i’ (1— F(glé) (

simplifies to:

BT (o)
W) e (1 f<q|é>>' (A4

Part 1. Equations (A.42) and (A.43) imply that ¢3%,,(¢) < t3%,(q) holds if i) v’ (1 —
F(q]é)) < 1,1ii) w’(l — F(q|é)) < w’(l — F(q|§)), and iii) pugy > pnru. For the optimist,
these three conditions hold in ¢ € [g, ¢*), where ¢* is the output level such that w’ (1 —
F(q*\é)) = 1. In that performance segment, t(q) < t3%;(q).

In contrast, in the set ¢ € [¢*, ] the weighting function of the optimist exhibits
w'(1—F(qle)) > 1 which contradicts the condition in i). Moreover, since lim,_,; % =0
and lim, ,;w'(1 — F(g|e)) = +oo, it must be that at the highest performance level:
t2%(q) > t3%,(q). Furthermore, for output levels lower than g, the inequality ¢(q) >

t3%,(g) can also hold under some conditions. Let 1o — gy, which happens in case

flgle)
f(qle)

of moderate optimism. In that case, t&(q) > t3%,(q) when is sufficiently small, or

equivalently, at high enough output levels.

Part2. Comparing equations (A.42) and (A.43) yields that ¢%,,(¢) > t33,(q) if i) w’ (1 —
F(gle)) > 1,ii) w'(1 = F(qlé)) > w'(1 - F(qle)), and iii) ptnpvr > pugy. For the pessimist,
these conditions hold in ¢ € [g, ¢*). In that segment of performance, t3%(q) > t3%,(q)-

Instead, in ¢ € [¢*, q], the p_robability weighting function exhibits v’ (1 — F(gle)) <1

f(gle)
f(gle)

F (q|é)> = 0, it must be that at the lowest performance level: 3(q) < ¢3%,(g). For output

which contradicts the condition in i). Moreover, since lim,_,4

= 0and lim,_5 w’(l —

levels lower than g, the inequality ¢5%(q) < t5%,(¢) can also hold under some conditions.

f(qle)
f(qle)

Specifically, it holds for sufficiently large , that is, for low enough output levels. W
Proposition 5
Proof. The solution to the principal’s problem is similar to that presented in Proposi-

tion 4 with the difference that w(p) is now inverse-S shaped.

Part 1. Optimal Contract without the M and IC constraints The contract satisfying
the first-order condition in (A.21) remains to be the solution to the problem in (4)
without IC and M constraints. Denote that solution by ¢1°(q).
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Equation (A.22) shows thatin ¢ € [g, g], the segment in which the weighting function

exhibits w”(p) < 0, the solution to the problem without the IC and P constraints is in-

w"(1-F(qle)) _
w'(1-F(qle))

+o00; at the highest output level, that solution exhibits lim,_, ;- il q) = +00. Moreover,
g p q—q~ UL

creasing in performance, t{b,(q) > 0. Also, Lemma A2 implies that lim,_, ;-

at the inflection point, ¢, the weighting function exhibits lim,_,; w” (1 - F (q|é)) = 0.
Thus, it must be that lim,_,;- t] (q) = 0.

Consider now the set ¢ € [g, ¢] where the weighting function exhibits w"(q) > 0.
According to (A.22), the solution to the unconstrained problem exhibits t{b,(q) < 0.
This is consistent with Corollary 1, which shows that without the IC constraint and
when w(p) is everywhere convex, the M constraint must be binding. Hence, because of
complementary slackness, the solution to the unconstrained problem without the IC
and M constraints must exhibit ¢'(¢) = 0 in ¢ € [q, ¢]. Thus, the resulting solution 0 (q)
is:

L:fb(q) _ {téb(‘j) if ¢ < ¢,
t(q) ifq>q.

Part 2. Incentive constraint can be slack at the optimum Denote by ¢3°(q) the solution
to the unconstrained problem when the M constraint is not taken into account. Suppose
that 1 = 0.Then t*(q) = t}’(q), where t]’(¢) is the contract presented above. From the
complementary slackness condition of ;1 = 0 we get:

q q
/u (t"(@))w'(1 = F(qle)) f(qle)dg — ¢ > /U(t{b(Q))w’(l — F(qle))f(qle)dq.  (A.44)
q

q

Using integration by parts, rewrite (A.44) as

b
£ (@) B D (w1 - Plafe) — (- Fle)]da> e (a4

‘Q\m

Assumption 5 implies w (1 — F(qle)) —w (1 — F(qle)) > 0 which, together with w >
0in ¢ > ¢ (equation (A.22)) and «'(t) > 0 (Assumption 3), imply that the left- hand side
of (A.24) is weakly positive.

Because w and u are twice continuously differentiable (Assumptions 3 and 4), and
since c is a constant unbounded from above, there exists ¢;, > 0 such that if ¢ < ¢;, then
the inequality in (A.45) holds. In that case, ;= 0 and 5*(¢q) = t1°(¢). On the other hand,
if ¢ > ¢;, then the inequality in (A.45) does not hold. In that case, the IC binds, it > 0,
and ¢3°(q) satisfies (A.13). In the remainder of the proof I consider the latter case.
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Part 3. Shape of ¢**(¢q) when the IC constraint is binding. The second part of the
proof analyzes the shape of t**(¢). To that end, I use equation (A.15) which presents
the derivative of ¢{°(¢) with respect to ¢. Throughout, let G € (g, ¢) be the output level
satisfying w (1 —F (cj|e)> = 1—F(gle) = 0.5, i.e. the output level at which the weighting
function transitions from concave to convex.

According to Definition 4, likelihood insensitivity implies w” < 0 for all q € (¢, 4.
Hence, the two terms on the right-hand side of (A.15) are positive and 449 ~ 0 in
q € (g, g); the solution to the relaxed problem is increasing in ¢ € (g, q]. Moreover, since
dtgb;‘” > 0.

Likelihood insensitivity also implies that w” > 0 for all ¢ € [q, ¢] (Definition 4).

w” (1 - F (cﬂé)) = 0, that solution also displays lim,_,;+

Therefore, the first term on the right-hand side of (A.15) is negative while the second
term there is positive. According to Corollary 1, the magnitude of v’ (1 — F(q|é)>
determines Which of these terms dominates the other, which, in turn, determines

the sign of YL@ When q decreases in the segment ¢ € [g, ], then the expression

w'(1— F(qle )) increases, making the second term in (A.15) larger, and thus that % is

more likely to be positive. Therefore, the solution to the relaxed problem is increasing
in performance as g — ¢.

Let us now investigate the behavior of P (Q)

level w”(l - (q|e)) = 0. Hence accordmg to (A.15), lim,_,4-

when ¢ — ¢~. Notice that at that output

dty ( ) > 0. It remains to

dif (q)

be shown whether t** ever decreases with output; that is whether < 0in (g, q).
Lemma A6 shows that for agent 7, who is more likelihood msensmve than j, the
probability p; € (0,0.5) inducing w;(p;) = w/(p:) is smaller as i’s insensitivity becomes
more severe with respect to that of j. That lemma also shows that the probability p,, €
(0.5,1) such that w;(p,) = w)(p,) becomes larger as i becomes more insensitive with
respect to j. Consequently, as i becomes more insensitive (with respect to j), the output
levels g1, gz € [g,q] such that g, > g1 that induce w}(1 — F(qle)) = w}(1 - F(gsle)) = ¢
for arbitrary small ¢ > 0 take place at a lower output level, in the case of ¢;, and a
higher output level, in the case of ¢,. Thus, stronger likelihood insensitivity expands the

segment g € [q1, ¢2] in which w] (1 - F(q|e)) < €. According to Corollary 1, this property

dsb(q)
dg

facilitates that the solution to the relaxed problem exhibits < 0 for intermediate

values in g € (g, g].

Define the segment of output levels in which Lséb(q)

< 0 by ¢ € |71, qr2] where
qz1,972 € (¢, Q) are output levels such that g;1 < gr2. According to Corollary 1, the
M constraint is binding in ¢ € [¢z1, ¢r2) if ¢ becomes suffers from sufficiently strong

insensitivity. Thus, due to complementary slackness, the optimal contract must exhibit
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t'(¢) = 01in q € [g71, gz2]- The optimal contract is therefore:

fib(Q) _ tsLb(Q) if qc {gv QI1> U (QI27 Q]v (A46)

t7(qn) if ¢ € (11, 472
sb
Instead, if likelihood insensitivity is not strong so as to generate Lfiq(q) < 0ingq €
[q71, qz2), the optimal contract is equal to ¢°(¢) and is everywhere increasing.
[ |

Corollary 6

Proof. Let agent ¢ be more likelihood insensitive than j. Proposition 5 shows that
the segment ¢ € [q1, ¢2] in which wg(l - F(q\e)) < ¢ holds is larger for ¢ than for j.
Corollary 1 shows that this property makes the expression in (A.28) larger, which
in turn facilitates %q(q) < 0 for intermediate values of the set ¢ € (g,q]. Thus, the
performance segment in which the (M) constraint binds and the optimal solution

exhibits #*¥; (¢) = 0 becomes larger with stronger likelihood insensitivity.
]
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B Prospect Theory Preferences

[FOR ONLINE PUBLICATION ONLY]

In this Appendix, I extend the model to account for reference dependence. To that
end, I enrich the agent’s risk attitudes by characterizing them according to Cumulative
Prospect Theory (CPT from here onward, Tversky and Kahneman, 1992). Accordingly;,
the agent does not evaluate the transfers in #(¢) as final carriers of wealth, but does so
relative to a reference point R > 0.

For simplicity, I assume that the reference point r is assumed to be exogenous to
the alternatives faced by the decision-maker. For instance, it can be the agent’s current
wealth at the moment of making decisions (Kahneman and Tversky, 1979; Tversky and
Kahneman, 1981). This reference point rule has been recently validated empirically by
Baillon et al. (2020) as it explains most of subjects” behavior.

As stated in the main text, the main departure of CPT with respect to RDU and
EUT is that the agent can exhibit different risk preferences for gains and losses. This
is captured with two ingredients. First, transfers enter the agent’s utility differently
depending on whether they are classified as gains or losses. A property that is captured

by the following assumption on the agent’s utility.

Assumption B1. The value function, V (t, R), is a piece-wise function,

o(t@ - R)  ift(g) > R,

V(t,R) =
(4 H) {Av(Rt(q)) ift(q) < R,

with the following properties:
e \>1;
e v(0)=0;
* v' > 0forallq € [q,q;
e v" < Oforallqclg,q.

The agent’s utility is convex for losses, generating risk seeking attitudes, and concave
for gains, generating risk aversion. Furthermore, Assumption Bl introduces loss
aversion. That is, transfers counting as losses loom larger than equally-sized transfers
counting as gains. This latter property is captured by the parameter A\ > 1 and expresses
a special dislike for losses.

The second ingredient is that the probability weighting function is defined sepa-
rately over gains and losses. Probabilities associated with gains are transformed by
the probability weighting function w, introduced in Assumption 4. On the other hand,
probabilities associated with losses are transformed with a probability weighting func-
tion z that applies transformations to cumulative probabilities, /'(¢g|e), rather than to
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decumulative probabilities.” I simplify the problem by assuming that z adopts the
properties of w.

Assumption B2. A probability weighting function for losses is a function z : [0, 1] — [0, 1]
satisfying the duality condition z(F(qle)) = 1 —w(1 — F(qle)) for any e.

All in all, the utility of an agent with CPT preferences when incentivized with a
contract t(q) is

CPT(t,e,r) = [Cv (t(q) — R) w’(l - F(q\e))

e \QI

— (1= Qu(R — t(q))2' (F(gle))| f(gle) dg = c(e), (B.1)

where ( is an indicator function taking the value ¢ = 1if ¢(¢) > R and ¢ = 0 otherwise.

The principal’s program when facing a CPT agent is:

e / (S(q) — t(a)) F(gle) dg
5.t CPT(t,&,R) >V,

CPT(t,& R) > CPT(t,e, R),
t(q2) > t(qu) for all g2, ¢1 € [q, q] such that g5 > ¢;.

Where the term V is the outside option of the agent, which can be negative.
The optimal incentive scheme offered to agents with CPT preferences is character-

ized next.

Proposition B1. Let Assumptions 1 - 5 and Assumptions B1-B2 hold. There exists a threshold
q € [q, q] such that the second best-contract, teb:
(i) pays R everywhere if § = q;
(ii) pays R in q < § and depends on performance as in Proposition 2, 3,4, or 5in ¢ > q if
q€(q.9);
(iii) depends on performance as in Proposition 2, 3,4, 0r 5if ¢ = q.

Proof. Rewrite Eq. (B.1) using Assumption B2 as

CPT(t,e,R) = [ [Cv(tg) = R)w'(1 - F(gle))

e \Q\

— M1 = (R — t(q))w' (1= F(gle))| f(gle) dg — c(e), (B2)

2In other words, the CPT agent orders possible transfers counting as losses from the least-desirable,
t(g), to the closest to the reference point from below, and uses a separate weighting function z to transform
the probabilities that emerge from these—as the literature describes them—Iloss ranks.
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where ( is an indicator function taking a value one if ¢ > r. Let first ( = 0. Denoting
by v and ;1 the multipliers associated to the participation and the incentive compatibility
constraints, respectively, the Lagrangian of the principal’s unconstrained problem can

be written as:

L(q.t) =(S(q) — t(q)) f(gle)
+u(—AWR—am)@41—F@wnﬂma—u%l—F@w»ﬂﬂ@)—ﬂ

+ 1/( — (R —t(q))w (1 - F(qle)) f(ale) — c - v).

(B.3)
Pointwise optimization with respect to ¢(¢), and some re-arrangements yield:
1 ( w'(1 - F(Q\6))f(Q\€)>
— =v+ull- — — |.
(R =) (w (1= F(gle))) w (1= Fgle)) f(ale) (B.4)

Denote by t£%(q) the transfer satisfying Eq. (B.4). I show next that a lottery L =
(p, R;1 — p,0) improves upon the solution ¢%(q) whenever 0 < t%(q) < R. Since
—\v (R— tg’(q)) is increasing in t%(q), there exists a number p € [0, 1] for each realization

of performance ¢ such that:

M(R = t3(q)) = A1 = w(p))v(R). (B.5)

Hence L, := (p, R; 1 — p,0) leaves the agent’s participation and incentive compatibility
constraints unchanged. Using the fact that the utility exhibits v” < 0, the above equation
implies:

Mw(R = t2(g)) < do((1 = w(p)R). (B.6)

Since v > 0, then the previous equation implies t{(¢) > w(p)R. Therefore, the
lottery contract L, can be cost-efficient for the principal, it provides the same incentives
at a lower perceived expected cost. Note that when w(p) < p the lottery contract has a
lower expected cost.

The incentives of offering L, are studied next. Let L = pR. The utility of an agent
when given L, is )

CPT(L, e R)=— (1 —w (é)) M(r) —c (B.7)
The equation above is not linear in L due to w having curvature (Assumption 4). Hence,
changes in L affect the agent’s marginal utility. To further understand how changes in
L affect the marginal incentives of offering the lottery contract, [ compute the first-order
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condition of (B.7) with respect to p, which gives:

w'(p)\w(R) = 0. (B.8)

Denote by p* the probability satisfying the condition in (B.8). The second-order

condition evaluated at p° is:
w” (p”)Av(R). (B.9)

The second-order condition shows that p°?* € (0,1) whenever w” < 0. This holds under
optimism or likelihood insensitivity. Moreover, by Assumption 4, lim, ,; w'(p) = 0
under optimism. So, in that case the first-order condition in (B.9) holds if p”* — 1.
Instead, if w” > 0 for any interval in p € (0, 1), then the solution must be p** € {0, 1}.
Comparing the utilities at those extreme levels of probability gives:

CPT(L,—1,& R) = —¢ > —Av(R) — ¢ = CPT(L,—o, ¢, R). (B.10)

Thus, it must be that the solution is p”* = 1. Regardless of the shape of the probability
weighting function, the principal avoids exposing the agent to losses by setting p* = 1
and paying t = R.

Let now ¢ = 1. The Lagrangian of the principal’s problem in that case can be written

as:

L(q,t) =(S(q) — t(a)) f(gle)
—|—,u<v w'(

(tg) = R)(w'(1 - F(
+ V(v(t(q) ~ R)w'(1 - F(qle)) f(qle) — c - V). (B.11)

ﬂ@ﬁ@@—wO—F@@Mm@)—%

Pointwise optimization with respect to ¢(¢), and some re-arrangements gives us

1
v'(t=R)w (1 - F(qle))

w'(1 - F(Q|6))f(9|€)>‘

— v+ u(l w(1-F(gle) f(gle)

(B.12)

Since v' > 0 and v” < 0 and w(p) is as described by Assumption 4, the solution is
similar to that presented in Proposition 2, 3, 4, or 5, except that the initial utility value
isnow R > 0.

To establish the location of the switch from paying the amount ¢ = R, given to
protect the agent from losses, to paying the agent according to the contracts from
Proposition 2, 3, 4, or 5, denote by ¢ € [g, ¢] the performance level satisfying:
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1 (1 w
=v+ o] —
)\UI(%R) W

(B.13)

Where the left-hand side of (B.13) captures the marginal incentives of offering the
lottery contract L with p = 1. The existence and uniqueness of § is guaranteed by
the fact that the left-hand side of Eq. (B.13) of is positive and constant in ¢ while the
right-hand side of that equation increases with ¢ (Assumption 5) over [0, +00).

There are three cases. When % is small and the right-hand side of (B.13) is large
enough, then ¢ > ¢. In that case, the solution is that t‘g’ = R is offered everywhere.
Alternatively, % can be large so that ¢ < g and the solution is fully characterized by

Proposition 4 and Proposition 5, depending on the shape of w. Finally, if § € [q, ¢] then

b R if g < q,
teq) = (B.14)
t%(q), t2(q) (Proposition 4), or t5°(q) (Proposition 5)  if ¢ > §.

Under CPT preferences, the optimal contract often includes a performance-insensitive
segment paying the amount r. The reason behind this segments is loss aversion. Expos-
ing the agent to losses by paying amounts lower than R would generate large disutility,
eventually leading to the agent rejecting the contract. To prevent this, the principal
can either introduce large rewards that compensate the agent for facing this risk, or
she can completely eradicate the possibility of losses. The former solution is expensive
since losses loom larger than equally sized gains by a factor of A. Consequently, the
principal offers, wherever necessary, the minimum amount required to locate the agent
in the domain of gains: #(¢) = R. This payment is given unless the realization of output
crosses a critical threshold .

Moreover, the optimal contract can include incentives that depend on performance
in the same way as the contracts described in Proposition 2, 3, 4, or 5. Depending on
the agent’s probability perception in gains, the shape of one of these contracts applies
for the performance levels g > §. That is because in the domain of gains, the CPT agent
exhibits risk attitudes equivalent to those of the RDU agent. Hence, the second-best
contract that motivates an RDU agent, also suffices to incentivize a CPT agent with the
same probability weighting function.

The contract characterized in Proposition B1, leads to incentive schemes that are
often observed in practice. For instance, when the CPT agent is sufficiently pessimistic

the resulting optimal contract can be binary. It pays a fixed salary, t(¢) = Rin¢ < ¢,
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and a lump-sum bonus, paid in in ¢ > ¢. This shape reflects different sources of risk
aversion. The first fixed-pay level ensures that the agent does not face losses, while the
second fixed-pay level reflects the impossibility faced by the principal to implement
incentives due to the agent’s severe pessimism. The emergence of these binary incentive
schemes is also documented by Herweg et al. (2010). The difference between their
setting and ours is that they do not consider probability transformations, so the agent’s
risk attitudes are not characterized by CPT. Also, our result holds for any level of loss

aversion, i.e. even if \ > 2.
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C Ambiguity Attitudes
[FOR ONLINE PUBLICATION ONLY]

The theoretical framework can be easily extended to capture deviations from EUT
due to attitudes toward ambiguity. This can be achieved using Source Theory (Abdellaoui
et al., 2011; Baillon et al., 2025), which, broadly speaking, states that under ambiguity
the phenomena of risk are amplified because there is “additional probability weighting.”
This additional weighting is included in the function w;, referred to as the source
function, which is endowed with the properties of Assumption 4. Importantly, the
source function might exhibit a different shape than w (the probability weighting
function), and this difference in shapes generates ambiguity attitudes.

In order to incorporate ambiguity into the model, consider a setting in which the
distribution F'(g|e) is unknown to the agent because, for example, he has limited
experience with the task. In such a case, it is said that the agent is facing an “ambiguous
task.” An event in the ambiguous task is defined as a subset E; C [g, ¢]. The collection
of all such events is denoted by 3, which I endow with the Borel o-algebra.

A widely used framework in decision making under ambiguity is the Choquet
Expected Utility model (Schmeidler, 1989). In this model, the agent evaluates events

using the following utility function:

CEU(t,¢) = / u(t(q)) dW — c(e), (C.1)
l9.d]

where IV is a weighting function, defined over events in ¥, that satisfies the following
properties for a given effort level ¢': W(Q|e') = 0, W([g, qlle’ ) = 1, and W(E2|e’ ) >
W(E1 e/ ) for any F,, E5 € ¥ such that E; C E,. A distinctive feature of this framework
is that it nests the Max-Min Expected Utility model (Gilboa and Schmeidler, 1989) as a
special case, arguably the most influential model in decision-making under ambiguity.”!
The preference representation in (C.1) generalizes subjective expected utility by
allowing W to be non-additive. That property introduces ambiguity attitudes into the
model. For instance, if W is convex, the decision maker underweights the likelihood of
events in the ambiguous task, which makes him averse to betting on these events as
compared to betting on equally likely events in a risky task—for which the calculation of

objective probabilities is possible.””

ZSpecifically, the Max-Min Expected Utility model is a special case of the Choquet Expected Utility
model in which W is assumed to be convex, thatis W(Es) + W(E1) < W(E2 N E1) + W(E3 U Eq) holds
forall E1,Ey C X.

22More precisely, let the event E; have a probability p;. The ambiguity averse individual with pref-
erences given in (C.1) perceives that W(E;) < p;. Therefore, when asked to choose between the bet
(100, E; 0, E°) and the lottery (100, p; 0,1 — p), he prefers the latter.
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The main problem with this approach for modeling ambiguity is its high intractabil-
ity, as the set of weighting functions IV that characterize preferences under ambiguity
can be extensive (Wakker, 2010). This intractability complicates the main analysis of
this paper, which involves comparing the agent’s behavior in an ambiguous setting to
his behavior in a hypothetical setting where the task is risky (probabilities are known).

To address this problem, I model decision-making under ambiguity with Source
Theory. The key component of that theory is the source of uncertainty, which refers to
a group of events generated by the same random mechanism (Abdellaoui et al., 2011;
Tversky and Fox, 1995). Accordingly, the collection of all events in the ambiguous task
is one source of uncertainty while the collection of all events in the case of a risky task
is another one.

The agent is assumed to exhibit probabilistic sophistication within a given source of
uncertainty but not necessarily across different sources (Chew and Sagi, 2008). Let P
denote the probability measure generated by ¥, the algebra of events in the case of
an the ambiguous task. In contrast, when the task is risky, the probability measure in
this source is the density function F'(g|e). This type of source-dependent sophistication
allows for different attitudes toward probabilities arising from sources of uncertainty.

In the case of an ambiguous task, there exists a function w, such that, for any e:

W(Ele) = ws(1 — Py(E)) for any E € [q, q]. (C.2)

The function wj, carries subjective probabilities to decision weights in the model.
Importantly, its shape may differ from that of w, the probability weighting function
which carries objective probabilities to decision weights. This difference in shape
between w, and w generates ambiguity attitudes, as will be discussed below.

Substituting (C.2) into (C.1) shows that in the case of an ambiguous task the agent’s
preferences are given by:

ST(te) = [ u(t(@) dws(1 - Pilgle)) - e(e). (C3)

9,9

Alternatively, when the agent is faced with a risky task, his preferences are given by (3).

Ambiguity attitudes are now incorporated into the model. The most recognized am-
biguity attitude is ambiguity aversion, which, in the context of this framework, implies
that the agent pays more attention to poor performance realizing in the ambiguous
task relative to the same outcome realizing in a risky task. This stronger pessimism
about outcomes realizing under ambiguity is captured by the model when w; is more
convex than w, leading the agent to overweight worse outcomes more under ambiguity
than under risk. In such case,, Proposition 2 characterizes the optimal contract while

Corollary 2 demonstrates that stronger ambiguity aversion, i.e. w; becoming more
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convex while w is kept fixed, leads to flatter contracts.
This extension of the model can therefore accommodate Ghirardato (1994)’s result
that under stronger ambiguity aversion a high level of effort can be elicited with

14

a “uniformly lower incentive scheme.” Furthermore, when ambiguity aversion is
sufficiently strong, Proposition 3 demonstrates that the principal has no other remedy
but to give up incentive compatibility, a result that echoes the finding in Lang (2017)
that a constant wage can be optimal.

Recent research shows that ambiguity aversion is not universal because individuals
tend to display ambiguity-seeking behavior for extreme events (Abdellaoui et al., 2011;
Baillon and Emirmahmutoglu, 2018; Trautmann and van de Kuilen, 2015). This pattern
can be captured in the model by assuming that the probability weighting function under
ambiguity, w,, exhibitsa more pronounced inverse-S shape relative to w. An agent with
such preferences is referred to as ambiguity insensitive (Baillon et al., 2018b). In the
case of that agent, the optimal contract is characterized by Proposition 5. Furthermore,
Corollary 6 implies that, under ambiguity, the optimal contract is flatter at intermediate
performance levels and concentrates incentives at the extreme events, compared to the
contract that would be optimal under risk.”

All in all, this extension reinforces the main finding of this paper. It discusses how
in a more realistic setting, in which the agent does not exactly know performance
probabilities, simpler contracts, i.e. with less incentives than in the case of risk, must be
implemented. This is because ambiguity attitudes are modeled as “extra” probability
weighting. Hence, the proposed explanation for the prevalence of simple contracts does
not rely solely on probability weighting but can also be partly attributed to ambiguity
attitudes.

ZNote that this framework accommodates the desirability of “bait contracts” (Viere, 2014). That is,
the principal can take advantage of the agent’s insensitivity to ambiguity by indexing performance to an
ambiguous task rather than a risky one. This is because such a strategy enables her to pay less for likely
events and more for unlikely ones.
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D Continuous Effort

[FOR ONLINE PUBLICATION ONLY]

Let e € [e, €] with e > 0. The following assumptions are made on ¢(e) the function
capturing the cost of effort.

Assumption D1 (cost of effort). c(e) : [e, €] — [0, +00) is twice continuously differentiable
with ¢(e) > 0and ’(e) > 0.

Furthermore, I impose the following assumptions on the cumulative distribution
function (CDF).

Assumption D2 (output distribution). F'(yle) : [y,y] — [0, 1] is twice continuously
differentiable with respect to e and y, and exhibits F,.(yle) > 0.

As in the main body of the paper, the probability density function is defined as
f(yle) := F,(q|e). Note that the convexity of the CDEF, F..(y|e) > 0, has been shown to

ensure the validity of the first-order approach.

fe(Q‘e)
f(ale)

Furthermore, I extend the continuous MLRP, diq ( ) > (0, to account for probabil-

ity weighting.

. . L\ w (1-F(qle)) f(qle)
Assumption D3 (continuous WMLRP). % (d g},(l_ F(q‘qe) f(q|:)) >) 0

A central implication of Assumption D3 is that it implies first-order stochastic
dominance, F.(qle) < 0.

We are in a position to present a sufficient condition that guarantees the optimality of
the contracts characterized in Section 4. The following lemma due to Gonzalez-Jiménez
(2024a) shows that when the agent’s weighting function is convex everywhere, those

contracts are optimal in a setting in which effort is continuous.

Lemma D1. Assume that F..(qle) > 0. The candidate solution generated the first-order
approach is valid if w” (p) > 0 for all p.

The condition presented in Lemma D1 is stringent. It implies that our results
do not hold when the agent is optimistic or likelihood-insensitive. Therefore, we
consider weaker requirements in order to validate the results of our standard model.
The following lemma states that a sufficiently convex cost function can ensure the
validity of the first-order approach even though the weighting function is not convex

everywhere.

Lemma D2. Assume that F..(q|e) > 0. For the first-order approach to be valid, it is necessary
that ¢’ (e) > B, where:

5= [ (0) G2 (v (1~ Flale)) Fclae) = (1= Flale)) (Fule)) )
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Proof. Using integration by parts, rewrite the agent’s utility in Eq. (3) as

RDU(t,e) = u(t(g)) — [g u’(t(q)) CM(:l(;)w(l — F(q|e))dy —c(e). (D.1)

q

Denote by t" the solution to the following principal’s program:

s.t. u(t ) /u'(t >d> ( F(q|e))dq—c(e)ZU, (D.2)
" (10) S (1= Plale)) Futyle)da = )

In the above program, the incentive compatibility constraint is replaced by the
first-order condition of Eq. (D.1) with respect to e. This approach is necessary and

sufficient if the following condition holds:

/;u'(wq))o“ofj)(w( F(gle)) Fec(ale) — wee(l—F<q|e>)(Fe<q\e>)2)dq—c"(e)<0.

(D.3)
Since ¢’(e) > 0 (Assumption D1), v' > 0 (Assumption 3), da) > (Assumption 1),
the following condition suffices for the concavity of RDU (¢, e).
’ 2
w! (1= F(gle)) Feelale) — w" (1 = F(gle)) (Fu(ale))” < 0 (D.4)

Due to F..(gle) > 0 (Assumption D2) and v’ (1 - F(q|e)) > 0 (Assumption 4),
a probability weighting function that exhibits w” (1 - F(y|e)> < 0 cannot fulfill the
condition in Eq. (D.4). Hence, for the optimality of ¢" it suffices that w" (1 - F (q]e)) >0

Letting p = 1 — F'(¢|e), that condition can be written as w” (p) > 0.
|

The Lemma shows that the first-order condition suffices to characterize the IC

constraint when either the weighting function is sufficiently convex, so as to guarantee

W (1-F @) ) o) ooy
w’(l—F(q\e)) o

simplicity, I assume that when w”(p) is not sufficiently convex, c(e) attains the bound

or when the cost function, c(e) is sufficiently convex. For

presented in the above Lemma. If that were not the case, the principal might require
other means to incentivize the agent. Gonzdlez-Jiménez (2024a) demonstrates that
stochastic contracts are optimal when this condition does not hold.

We are in a position to characterize the optimal contracts when effort is observable.
It turns out that they are identical to those presented under the binary case.

66



Proposition D1. The optimal contract without the IC constraint under optimism or likelihood
insensitivity exhibit the shapes of the contracts described in Proposition 4 i) and Proposition 5 i).

Proof. Denoting the Lagrange multiplier of the agent’s participation constraint by v,
the Lagrangian of the principal’s unconstrained (without the M constraint) problem

writes as:
L(q,t) =(S(a) — t(0)) f(gle)
o fult)uf (1~ Flalo)) ol 0 = efe)|

Pointwise optimization with respect to ¢(¢) and algebraic manipulations yield

1
! (£7(q))uw' (1 = Flgle))

=v. (D.5)

By assumption, «'(t) > 0 and w'(p) > 0, so v > 0. The participation constraint binds at
the optimum.
The optimal effort level, e* satisfies

[ (8t0) = (@) folale")dat
(= [ (@) (11~ Plale) ) Flalea = ) ) 0. @

q

becomes:

(S(g) = t"*(q)) fe(gle”)dg = 0. (D.7)

The solution of the principal’s program is thus given by {(t/°(¢), e*)}, where t/%(q)
is the transfer satisfying Eq. (D.5) and e* is the effort level that satisfies Eq. (D.7).
To investigate the shape of ¢/°(¢) I differentiate (D.5) with respect to g, giving us

oo () w(1 - F(glen))
" (q) =
u'(#%(q)) w'(1 — F(qlev))

f(qle). (D.8)

This is exactly the equality in (A.22) when letting e = e*. The analyses of the shape
of t/°(¢) under optimism, and likelihood insensitivity in Propositions 4 i) and 5 i)

immediately follow. n

Consider now a setting of moral hazard. First, I show that when optimism or
likelihood insensitivity are moderate, the first-best may suffice to elicit high effort
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levels. This solution is the analog of Proposition 4 if ¢ < ¢o and Proposition 5 if ¢ < ¢;.
However, as a direct consequence of considering a continuous action space, I condition
on the values of ¢**, the optimal effort level implemented by the principal, rather than
on c.

Proposition D2. Assume Optimism or Likelihood Insensitivity. There exists a unique effort
level é € (e, €] such that if e**, the effort level implemented by the principal, is such that e** < é,
the optimal second-best contract is the contract from Proposition D1.

Proof. Denote by v the Lagrange multiplier of the agent’s participation constraint,
and 1, of the incentive compatibility constraint. The Lagrangian of the principal’s
unconstrained maximization problem (without the M constraint) writes as

L(q,t) =(S(q) —t(0)) f(gle)
+uPM®XMO—F@MMMMMﬂWO—FMMﬁwMM@M)—ﬂ@]

v ulel)af (1 = Flalo)) lale) - 0 - efe)]
Pointwise optimization with respect to #(¢) and algebraic manipulations yield

1 i £ (w1 F(gle)) f(gle))
w (#4(q))w (1= F(qle)) /(1= F(qle) f(gle))

(D.9)

The optimal transfer under moral hazard, t**(q) results from the condition above.

The optimal effort level under moral hazard, e**, must satisfy

/j (S(a) = t"(a)) fo(gle™)dg+

p <_ /q o (17(q)) (we(l — Flgle™)) Feelgle™) — wee(1 — F(Q|6**))F€(Q|6**)>dq N CH(eM)) -
g (D.10)

The solution of the principal’s program is thus given by {(¢**(¢), ¢**)}, where t**(q)
is the transfer satisfying Eq. (D.9) and e** is the effort level that satisfies Eq. (D.10).

I next show that ;1 = 0 can hold at the optimum under optimism or likelihood
insensitivity and the solution to the principal’s problem becomes {(t/%(q), e**)}, where

t/%(q) is the first-best contract presented in Proposition D1.

68



Optimism Consider the case of an agent with optimism in the sense of Definition 2.
From the complementary slackness condition, we get that when ;. = 0, then

o (t<q>)0“cfj)w’(1 — F(gle)) F.(yle)dg > (e) (D-11)
Assumption D3 implies F,(g|e) < 0 which, together with dg—(;’) > 0 (Proposition D1),
w' > 0 (Assumption 4) and «'(t) > 0 (Assumption 3), imply that the left-hand side
of (D.11) is weakly positive, rendering the inequality in (Assumption 4) feasible.
The right-hand side of (D.11) is increasing because ¢/(0) = 0 and ¢’(e) > 0. Also,
because w’ (1 - F (q|e))Fe(q]e) is decreasing, the left-hand side of (D.11) is decreasing.
Hence, there exists an effort level é € [e, €] such that

o (1(0) 2w (1 - Flale)) ole)da = ¢ o).

Hence, for the effort levels e € [e, é), the inequality in (D.11) holds .

Likelihood insensitivity For likelihood insensitivity dg—((;’) > (0 (Proposition D1),
so the inequality in (Assumption 4) is feasible. Since, w”(p) < 0in (0, p), then v’ (1 -
F (q|e)> F.(qle) is decreasing in that probability interval, which guarantees the existence
of é.

|

Second, it is shown that the contract shapes presented in Proposition 2, 4, and 5

continue to hold when effort is continuous.

Proposition D3. The optimal second-best exhibits the shapes of the contracts presented in
Proposition 2 under pessimism, or the contracts presented in Propositions 4 and 5 if e** > é
under either likelihood insensitivity or optimism.

Proof. Assume 1 > 0. Differentiate (D.9) with respect to ¢ to obtain:

w0 = Fgle)
T =g (1 P! 1
w (1= Fgle™) ' (#(g))? d [ & (w/(1= F(gle))f(ale))
T ) dq( w(1— Flgle) /(4]e)) ) (012

The above equation and Eq. (A.15) differ only in that e is now e** and the discrete
MLRP is replaced by its continuous analog. Therefore, the analysis of t**'(¢) is similar
to that presented in Proposition 4.

Under optimism, w”(p) < 0 for all p € (0, 1) implies that both terms in Eq. (D.12) are

positive, implying that ¢** is everywhere increasing. Moreover, since lim,_,; w'(p) = +00
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and lim,_,, w'(p) = 0, then t**'(¢) — 400 at both extremes.
q9—q

Under_pessimism, w”(p) > 0 forall p € (0,1). Hence, the first term in the right-hand
side of Eq. (D.12) is negative, while the second one is positive. Due to lim,_,; w'(p) = 0,

then lim,_,4 ‘;’;,l(( )) +00; the first term in Eq. (D.12) dominates and lim,_,;t*'(¢) = —o0.

Eq. (D.12) implies that t**'(¢) > 0 under pessimism requires:

Cd (&= Flgle)f(gle)) _ w1 Plgle))f(ale) 1
dg \  w/(1—F(qle)f(qle)) w'(1 = F(gle)) pw' (1= F(gle) )u'(t(q)) )

(D.13)
The W-MLRP gives
d (& (= Fe)fe)) d <f6<|>>
dg \  w/(1—F(qle)f(qle)) dg
( )))2F6<q|e>f<q\e>
1 - F(gle))’
))f(q\e)
< <q\ A (D19

I use the above expression to rewrite Eq. (D.12) as

a4 (L)) (w701 <|>>) o (o |
i) > (w1 - >>)2 (- = F)
— 4t (v (1= Flale))f(ale))
o ) o1

Since lim,_,; w'(p) = +o0, then lim,_,; w”(p) = +o0. Therefore, the quantity

1
' (t0(q) )w" (1 — F(gle))

goes to 0 as g approaches ¢. All is left is

d (flde)) (w1 = F(gle))) fale) ( Ed — gt (w1 - F(qe))f(qe))‘)
da 2 —Fe(qle) + ; ,
A <f (dle) ) (w(1 = F(gle))) ' wI=Fa) o

which holds from the WMLRP (See Eq. (D.14)). Therefore, there exists an output
level g, € (g, ) such that ¥ (q) > 0if ¢ € ¢, qn) and t**’(q) < 0 otherwise. The method
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for bunching is the that given by Proposition 1 and Corollary 1.

D.1 Stochastic contracts

Relaxing the assumption of binary effort might render the contracts characterized in
Sections 4 and 5 suboptimal. We now study the optimal contracts that emerge in that
case.

Lemma D1 shows that a necessary condition for invalidating the results in Sections 4
and 5 is that the agent’s probability weighting function be concave for some interval
in p € (0,1). Because that shape of the weighting function implies probabilistic risk-
seeking attitudes, the optimal contract should include greater risk than that implicit
in the solutions presented in sections 4 and 5. In a related model, Gonzalez-Jiménez
(2024a) shows that when the agent is an RDU maximizer and has probabilistic risk-
seeking attitudes, it can be optimal to implement a stochastic contract of the form
L :=(r, %; 1 —r,0) where r € (0, 1) is a probability chosen by the principal.

We complement the findings of Gonzélez-Jiménez (2024a) by fully characterizing
the optimal stochastic contract. This is accomplished in two ways. First, we use the
results of our standard model to define the outcome of the stochastic contract #(¢q). For
example, when the agent is optimistic, that outcome is described by Proposition 4 and
when the agent is likelihood-insensitive it is described by Proposition 5. Second, we
specify the probability that must be included in the optimal contract. The following

proposition summarizes that characterization.

Proposition D4. Suppose that the condition presented in Lemma D2 does not hold. Then, the

optimal contract is a binary lottery (r*, tsiﬁq); 1 —r*,0), where:

S uttyne (1-F(ale))

B f;u(%)dw(lfF(qk)
(it) t** depends on performance as in Proposition 4 if the agent is an optimist, or as in

(i) r* satisfies w(r*) ) and w(r*) > r*; and

Proposition 5 if the agent is likelihood-insensitive.

Proof. The utility of an agent when he is offered the contract (r, f; 1—r0)is

- /qqu (i) duw(r(1 = Flgle))) = c(e) (D.17)

Under the assumption of reduction of compound lotteries, the utility can be rewritten
as

—w(r) /'g u (i) dw(l — F(q|e)> —c(e). (D.18)

q
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The first-order condition of the above equation with respect to 7 is:

N AN B
—w (7’)/{7 u (r) dw(l - F(q\e)) + w(r)/q u (r) ﬁdw(l - F(q|e)) =0. (D.19)
Some albegraic manipulations yield:

w'(r) _ q? (7) Foddw(1 - F(q‘e))_ (D.20)
wlr)  fFu(f) dw(1 - Fgle))

This equality can be written as a the following ordinary differential equation:

ar () = =g ([ (}) aw(1 - Fialo) 21

Integrating both sides over [ry, 1] gives:

—In (w(r)) = —n (/;u(t) du(1 - F(q|e))>) +In </qqu (:0) du(1 - F<qye))>,

(D.22)

which can be rewritten as

Jil u(t) duw(1 — F(gle))

= . D.23
Ji (%) dw (1= Fale) .

w(ro)

Letting r, = r*. We obtain the first part of the Proposition.
The second order condition of the agent’s utility with respect to r is:

—w" (r*) /qqu (71) dw(l — F(q|e)) + 2<w'(7’*) - wr(;r)> /qq u (:*> Tizdw(l — F(q|e))
—w(r") /qq u” <t> Zdw(l — F(q|e))

/r.*

(D.24)

Since u” < 0, the last expression in the equation above is negative. The first expres-

sion is negative if w” (r*) < 0. Moreover, the second expression is positive if

w’(r*) > wE:*) @/iln (w(r))dr > /;ln (r)dr (D.25)
which holds if w(r*) > r*. [ |

The optimal stochastic contract enables the principal to elicit high effort levels by
taking advantage of the agent’s probability weighting. This is first achieved with a
probability that will be overweighted by the agent, i.e. w(r*) > r*, which guarantees
that the agent displays probabilistic risk-seeking behavior and a preference for risky

72



u(t**(q))

t3b(q)
,r*

contracts. Moreover, the condition w(r*) = ensures that the agent optimally
inflates the perceived benefits from exerting high effort when working under the

contract (7, tsiff”; 1 —7r*0).
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E Adverse Selection followed by Moral Hazard
[FOR ONLINE PUBLICATION ONLY]

Assume for simplicity that there are two types of agents: EUT and non-EUT. Also,
suppose that non-EUT agents have RDU preferences with likelihood insensitivity and
pessimism. Their weighting function exhibits an inverse-S shape and it yields E(t) >
E(t), where E(t|e) := fq‘ju(t)dw(l - F(q\e))— a non-additive expectation. Various
studies support this assumption (Bruhin et al., 2010; Harrison and Rutstrom, 2009). 1
refer to these agents as L.

The principal knows that she contracts with a EUT agent with probability 7z and
with a non-EUT agent with the complement 1 — 7. The timing of her problem is as
follows:

1. The agent learns his type: £U or L.

2. The principal offers a stochastic contract ¢(gq).
3. The agent accepts or rejects the contract.
4

. If the contract is accepted, the agent exerts effort e, which translates into perfor-
mance q.

5. The transfer specified by the contract is paid to the agent.

The solution to this problem of moral hazard followed by adverse selection is
provided next.

Proposition E1. The optimal menu of contracts, {55, t3}, exhibits the following properties:

1.tk satisfies E (u(tSEbU)]é) — cwhile t3) satisfies . (u(tib)]é) =E ( (t)]e ) ifw (1 — F(qle)) >
1.

2. 13 satisfies B(t52|€) = c while t3%; satisfies E(t3%;|e) = E(t3;]e) if w' (1 — F(gle)) < 1

Proof. the moral hazard incentive constraint of the EUT agent when given a contract
t EU is

q q
/U teu(q e)dg —c /U teu(q qle) dg, (E.1)
4q 4

and the moral hazard incentive constrain of the non-EUT agent when given ¢/, is

[ulte(@)w' (1= Flale)fale)dg— e [u(t 1 - F(qlo)) f(gle)dg.  (E2)

To distinguish between the two agents, ¢;, and ¢ 5y must satisfy the adverse selection
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incentive-compatible constraints. That is for the EUT agent:

ee ee

[ wlte(@) F(ale) dg — e = max { [l £)dq — cle >} (E3)

and for the non-EUT agent:

[ ulte(@)w! (1= Flal)) f(ale) da ¢

> max {/u tru(q F(q\é))f(q\é) dg — c(e)}. (EA4)

eE{e e}

Finally, the participation constraint of both agents, when the contracts targeted to

them are selected, are

/qu tEU gle)dg — ¢ >0, (E.5)
and ; 7
[ultel@)w (1= F(alo)) f(ale)da = ¢ > 0. (E.6)

The standard approach to solve the adverse selection problem is to provide rents to
the more efficient agent, which in turn depends on the impact of exerting high effort.

Formally, efficiency for the non-EUT agent amounts to:

[ (1= Flale) flaleda — ["o! (1= Flale)) Flale)da =

w (1= F(gle)) —w (1 —F(gle)). (E7)

Instead, for the EU agent, efficiency amounts to:

[ fale)da - [ flale)da = (1 - Fale) - (1 = Flgle)). (ES)
The W-MLRP (Assumption 5) implies both F(g|e) < F(qle) and w (1 — F(qle)) >
w (1= F(gle)).

A sufficient condition for (E.7) to be larger than (E.8) is w'(1 — F(¢le)) > 1 for any e.

That is because
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w'(s)ds > ds &

/1F(q|e) 1-F(qle)
1-F(qle) 1-F(qle)

w (1= F(qle)) —w (1 - F(qle)) > F(qle) — F(gle) (E.9)

Under likelihood insensitivity w'(1 — F(gle)) > 1 holds in ¢ € [q, ¢*), where ¢
satisfies w’ (1 — F(¢/*|e)) = 1 and w” (1 — F(q/*|e)) > 0, and also in ¢ € (g;*, q], where
q;* is such that w' (1 — F(g;*|e)) = 1 and w” (1 — F(gp*x|e)) < 0.

Suppose the non-EUT agent is more efficient. As shown above, this mainly happens
when the agent’s possible actions generate probabilities that are located at extremes
of the output interval. I first reduce the number of constraints to solve the principal’s
problem. Equations (E.5) and (E.4) immediately imply (E.6). Hence, at the optimum the
participation constraint in (E.5) binds, while the participation constraint in (E.6) slacks.

From equation (E.3) and the constraint in (E.5), which binds at the optimum, we

obtain:

e€{e,e}

0 > max {/u(tL(q))f(q|e) dg — c(e)} , (E.10)

which implies that EUT agents cannot afford to mimic non-EUT agents. Hence, the
relevant adverse selection constrain is that in (E.4), which states that the non-EUT agent
derives rents from mimicking the EUT agent. In contrast, equation (E.3) slacks at the
optimum.

A direct implication that (E.4) binds is t1.(¢) > tgv(q), which in turn gives

u(teu(q)) f(gle)dg — e > [ u(teu(q))f(gle) dg. (E.11)

‘Q\Q\
‘Q\Q\

Hence, the moral hazard constraint in (E.1) slacks at the optimum.
Next, from the inequality in (E.6), which slacks at the optimum, along with equation
(E.10), which holds with strict inequality, I obtain:

u(te(q))w' (1 - F(qle)) f(gle)dg — ¢ >0 >

‘Q\Q\

e€{e,e}

max {/u(tL(q))f(qe) dg — c(e)} : (E.12)

The above equation, together with the assumption of likelihood insensitivity with
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pessimism, implies that the non-EUT agent’s perception of probabilities generate:

[ u(te@) flaleyda > [u(ts(a))w’ (1= Fale)) f(ale) da, (E.13)
Equations (E.12) and (E.13) imply
[ ultei@)w (1~ F(ale)) fale)da = ¢ > [t — Flqle)) f(ale)dg.  (E.14)

and equation (E.2) is implied by other constraints in the principal’s program.

Hence, at the solution only equations (E.4) and (E.5) bind. Thus, the optimal transfer
given to the EUT agent, tzy, must guarantee E(u(tEU)|é) = [Tu(tey)f(gle)dg = ¢,
satisfying the binding constraint in (E.5). Moreover, the transfer offered to the non-EUT,
t1, should satisfy

- a -
E(ultr)le) = [ u(ti)w! (1= F(ale) f(ale)da = E(u(te)le).
as implied by (E.4).

At implied probabilities that make the EUT is more efficient, the proof follows a
similar logic. The participation constraint of the non-EUT agent binds and the adverse
selection incentive compatibility constraint for the EUT binds. Together these two
binding constraints lead to a solution whereby ¢; guarantees E(u(t L) |é) = cand tgy
guarantees ]E(u(t EU) |é) = E( (tr)le ) at those output intervals.

|

The principal offers a menu of contracts with a contract targeting each existing type.
Thus, in our case the optimal menu consists of two contracts. Moreover, the principal
implements high effort by making each of these contracts contingent on performance
either as described by the optimal contract from Holmstrom (1979), or as described by
Proposition 5. This guarantees that incentives are given according to they way in which
each type perceives output realizations. Importantly, to guarantee self-selection into
the right contract, informational rents are included in one of the contracts. Specifically,
the contract that targets the most efficient type is embellished with rents to discourage
mimicking.

So far this solution seems standard. However, whether one agent is more efficient
than the other crucially depends on probability weighting. When the agent’s actions
yield high and/or low probability, the agent suffering from likelihood insensitivity
inflates the impact of his action on the probability of obtaining higher output levels.

In that case, this irrational agent is more efficient; he is more likely to exert high effort
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with lower pay. In this situation, the menu in Proposition E1 (2) becomes relevant as it
disincentivizes the non-EUT agent to mimic the EUT agent. Alternatively, when the
agent’s actions yield intermediate probability events, exerting effort seems pointless to
the likelihood insensitive agent. The EUT agent is more efficient as he would require
lower incentives to be motivated. The menu of contracts in Proposition E1 (1) becomes
relevant in this case.
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