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Abstract

This paper shows that well-established biases in decision making under uncer-
tainty generate poverty traps. A theoretical framework is developed to show that
the biases of probability weighting and ambiguity attitudes can lead individuals
to forgo profitable investments. The model further predicts that poverty increases
the likelihood of such investment errors. As a result, these biases disproportion-
ately discourage investment among poor individuals, thereby contributing to the
persistence of poverty. The existence of this poverty trap is empirically validated
using data from two experiments conducted on representative samples of Ameri-

can households.
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1. Introduction

The poor often forgo opportunities that could help them escape poverty. They under-
invest in preventive health products (Dupas and Miguel, 2017), fail to adopt technolo-
gies that raise agricultural productivity (Duflo et al., 2008, Suri, 2011, Suri and Udry,
2022), and undervalue the long-run returns of education (Jensen, 2010, Nguyen, 2008).
These patterns persist even when credit, liquidity, and information constraints are re-
laxed (Duflo et al., 2011, Dupas and Miguel, 2017, Suri and Udry, 2022). This evidence
suggests that poverty perpetuates through mechanisms beyond material constraints
that are rooted in the behavioral and psychological consequences of poverty.

This paper offers an explanation for these patterns of behavior grounded in how
individuals perceive uncertainty. It proposes that well-established biases in decision
making under uncertainty—probability weighting and ambiguity attitudes—can gener-
ate poverty traps. These biases distort the perceived return to investments, causing
individuals to systematically undervalue opportunities that are, in expectation, prof-
itable. Moreover, poverty amplifies these distortions. Consequently, poor individuals
become more prone to these perceptual errors, which discourages investment, lowers
expected future earnings, and reinforces poverty.

I formalize this mechanism using a theoretical model in which an individual, en-
dowed with an initial level of wealth, chooses how much to invest in a risky project
while allocating the remainder to immediate consumption. The model assumes that
higher investment increases the probability of achieving higher returns but does not
guarantee them. To provide a normative evaluation of the outcomes of this decision
problem, I take expected utility individuals as the benchmark. These individuals eval-
uate the trade-offs between risk and returns objectively, and choose a level of invest-
ment that maximizes utility in the absence of bias.

To understand how mistaken perceptions of uncertainty perpetuate poverty, I in-
troduce probability weighting into the model (Quiggin, 1982, Tversky and Kahneman,
1992, Abdellaoui, 2000). Under probability weighting, an individual’s preferences be-
tween risky alternatives are not linear with respect to probabilities. A large body of
empirical evidence shows that individuals, when making decisions under risk, sys-
tematically misperceive probabilities in this way (see Fehr-Duda and Epper (2011) and
Wakker (2010, p. 204)).!

A key prediction of the model is that probability weighting induces underinvest-

ment relative to the expected-utility benchmark. This occurs because, under this

!Probability weighting is also observed outside the laboratory in settings with sizable stakes (Bom-
bardini and Trebbi, 2012), gambling choices (Snowberg and Wolfers, 2010), and insurance demand
(Barseghyan et al., 2013).



bias, individuals assign disproportionate weight to the probabilities of extreme re-
turns while underweighting other probabilities. As a consequence, investments that
raise the probability of favorable but moderate outcomes are undervalued, even when
they are profitable on average. Importantly, certain types of probability weighting
generate extreme underinvestment, leading individuals not to invest at all. In par-
ticular, when probability weighting induces risk-seeking attitudes, investments with
non-extreme returns become unappealing, and individuals optimally choose to forgo
investment entirely.

In the model, rich and poor individuals exhibit the same degree of probability
weighting—they are equally accurate (or inaccurate) in evaluating probabilities. How-
ever, the poor face additional constraints that magnify the consequences of these mis-
perceptions. Specifically, I assume that initial wealth and investment are complemen-
tary in generating future wealth. This captures the idea that poorer individuals must
invest more to achieve the same improvement as the rich, owing to limited market ac-
cess, lower capital, or weaker networks. Under this assumption, the gains from invest-
ment rise with initial wealth, and the poor are therefore more exposed to the extreme
underinvestment induced by probability weighting. Because their investments gen-
erate modest gains, distorting the perceived probabilities of success has a first-order
effect on their evaluation of these investments. For the rich, by contrast, the gains from
investment are large enough such that the influence of probability weighting becomes
negligible.

To understand the long-run consequences of this investment behavior, I extend the
model to a dynamic setting in which the individual repeatedly chooses how much to
invest each period. The results reveal a self-reinforcing dynamic between biased per-
ceptions of risk and economic disadvantage. When wealth is low, probability weight-
ing leads individuals to forgo profitable investments, limiting subsequent wealth ac-
cumulation. Low future wealth, in turn, further reduces the perceived gains from
investing, strengthening the behavioral distortion and sustaining low investment. By
contrast, wealthier individuals, who experience higher gains and whose probability
distortions matter less in relative terms, continue to invest and accumulate wealth.
The model therefore provides a behavioral foundation for poverty traps: even with-
out credit, information, or market frictions, misperceptions of risk can lock the poor
into persistent poverty.

I test the empirical validity of this poverty trap using data from two experiments
conducted on representative samples of American households. The first experiment,
originally implemented by Dimmock et al. (2021) using the American Life Panel, elicits

each respondent’s probability weighting function. I leverage these elicitations to test



an implication of the model: lower levels of income and wealth are associated with
stronger probability weighting. This equilibrium outcome of the model arises because
the behavioral poverty trap keeps biased and poor individuals persistently poor, while
those who are less biased and less externally constrained can escape poverty. The
analyses show that, on average, respondents display a probability weighting function
with an inverse-S shape, meaning that the probabilities of extreme outcomes are over-
weighted while the probabilities of intermediate outcomes are underweighted. This
shape of probability weighting generates risk seeking attitudes for high monetary out-
comes. More importantly, I find that both family income and financial wealth are sig-
nificantly and negatively related to the strength of probability weighting, measured
by the steepness of the inverse-S curvature, in line with the model’s predictions.

While the findings from the first experiment support the model’s predictions, they
are also open to alternative interpretations. Specifically, one could argue that causal-
ity runs in the opposite direction: individuals who are most affected by probability
weighting may become poor as a consequence of their biases. To address this concern
and provide causal evidence for the model’s mechanism, I draw on the experiment
of Carvalho et al. (2016) using the GfK Knowledge Panel. In this study, respondents
were randomly assigned to complete an incentivized survey shortly before or after
their monthly payday, generating exogenous variation in financial resources. I use
this design to test whether individuals with fewer resources—those surveyed before
payday—are more prone to underinvest in an experimental task due to probability
weighting. Although average underinvestment does not differ significantly across
treatment groups,the difference becomes pronounced among before-payday respon-
dents who also exhibit sufficiently concave utility. Intuitively, the poverty trap mech-
anism operates for participants whose marginal utility of consumption is steep: these
individuals experience a sharper decline in the value of consumption before payday
and thus become more susceptible to the distortions induced by probability weight-
ing. This evidence provides a causal test of the theory and supports its core prediction
for the subgroup of respondents with high curvature in their utility function.

The paper concludes by extending the model to incorporate misperceptions of sub-
jective probabilities, commonly referred to as ambiguity attitudes (Trautmann and van de
Kuilen, 2015). In this extension, the investment project is assumed to be ambiguous,
that is its return distribution is unknown to the decision maker. To model prefer-
ences in such environments, I adopt source theory developed by Baillon et al. (2025).
A key feature of this approach is that it posits that under ambiguity, the phenom-
ena of risk are amplified because there is “additional probability weighting,” which

captures a preference (or dislike) for known risks over unknown ones. The extended



model shows that the behavioral poverty trap identified under risk persists under am-
biguity: ambiguity attitudes further distort the perceived attractiveness of investment,
reinforcing extreme underinvestment among the poor. Moreover, the threshold level
of initial wealth required to avoid the poverty trap becomes higher under ambigu-
ity, implying that even individuals who would escape poverty under risk may remain
trapped when facing ambiguous opportunities. Thus, ambiguity makes the poverty

trap more severe and more easily sustained.

1.1. Related literature and contributions

This paper contributes to several strands of research. The first is the literature on de-
velopment economics and poverty traps. Classic theories explain persistent poverty
through mechanisms such as credit constraints (Banerjee and Newman, 1993), non-
convex technologies (Dasgupta and Ray, 1986, Galor and Zeira, 1993) , and social
interactions (Bowles et al., 2011a, Chapter 6). More recently, attention has shifted
toward behavioral mechanisms to explain poverty, including time-inconsistent pref-
erences (Banerjee and Mullainathan, 2010, Bernheim et al., 2015, Laajaj, 2017) and risk-
less reference-dependence with aspirations as reference points (Bogliacino and Ortol-
eva, 2013, Dalton et al., 2016, Genicot and Ray, 2017). I contribute to this literature
by proposing a new behavioral poverty trap rooted in decision-making under uncer-
tainty. Whereas previous behavioral models largely abstract from uncertainty, this pa-
per highlights how poverty and distorted perceptions of uncertainty interact. Specif-
ically, I show theoretically and empirically that probability weighting and ambiguity
attitudes—two empirically robust biases—can generate and sustain poverty traps.
The second contribution is to the literature on decision making under risk and
ambiguity. The paper shows how recent advances in decision theory offer valuable
insights into relevant economic phenomena. In particular, it uses the distinction em-
phasized by (Wakker, 2010) between pessimism and optimism— the motivational com-
ponent of probability weighting captured by the convexity or concavity of the prob-
ability weighting function— and likelihood insensitivity— the cognitive component of
probability weighting that generates an inverse-S shape (Wakker, 2010). The model
and empirical results demonstrate that only the latter, the cognitive limitations to ac-
curately perceive probabilities, can generate poverty traps. Thus, in contrast to exist-
ing work, the framework identifies a purely cognitive channel that alone can generate
persistent poverty. Another tool borrowed from the literature of decision theory is the
distinction between probability weighting caused by risk and that caused by ambigu-
ity, which is conceptualized by the theory of Baillon et al. (2025). This difference is

crucial to easily incorporate ambiguity attitudes in the model, and shows that under
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a more realistic setting of ambiguity, the poverty trap emerges and affects individuals
with higher initial wealth. This implies that in real-world settings where ambiguity is
pervasive, such behavioral poverty traps are easier to sustain and more economically
consequential.

Overall, the paper’s contribution is twofold: it introduces a new behavioral mecha-
nism linking poverty and decision biases, and it empirically validates this mechanism
using large-scale, representative data. By connecting the psychology of risk percep-
tion to the economics of poverty, the paper provides a unified explanation for why the
poor may remain poor even in the absence of traditional constraints.

The remainder of the paper is organized as follows. Section 2 presents a stylized
model that serves as an example to introduce the intuition of the theoretical frame-
work. Section 3 focuses only on risk and shows that the results from Section 2 can be
extended to a more general setting. Sections 4 and 5 show that the model’s predictions
are empirically validated by data from two experiments. Finally, Section 6 discusses

extensions of the model, such as the extension to ambiguity.

2. Motivating Example

To illustrate the mechanism through which probability weighting can generate under-
investment and, ultimately, poverty traps, consider the following simple two-period
setup. An individual begins with initial wealth level z, > 0 and decides to invest a
share e € [0,1] of her wealth in a risky project, consuming the remainder (1 — e)z,
immediately. If the project succeeds, next-period wealth is given by a Cobb-Douglas
technology:

Ko 1—p
Toz ",

where ;1 € (0,1) measures the complementarity between initial wealth and the return
z > 1. If the project fails, next-period wealth is equal to 0. It will be assumed that the
probability of success increases proportionally with the share invested: p(success|e) =
€.
Suppose that the individual distorts probabilities according to the probability weight-
ing function
w(e) = e, with 3 € [1,2).

When > 1, probabilities are misperceived, and when 3 = 1, probabilities are per-
ceived accurately. For analytical convenience, consumption utility is assumed to fol-

low the CRRA specification: u(z) = z'™7, with 0 < vy < 1.



Biased individual. Consider first the case 3 > 1. The optimization problem is

argmax [e” - (:L‘f)‘zl_“)l_’y +(1—¢°). (0)1_7} +((1—e)- xo)l_v. (1)
e€[0,1]
Let e; denote the optimal investment level. For an interior optimum, the first-order

condition is
Bler ) T = ao(1 =) (L= €f) - 0) " = 0. @

The first expression in the equation above represents the marginal benefit of invest-
ment, which depends on the probability weighting parameter 5. The second expres-
sion captures the marginal utility cost of reducing present consumption.

Under 8 > 1, the objective may be non-concave, and corner solutions must there-
fore be considered.” To investigate when a corner solution is relevant, evaluate (2) as

er— 0"

lim [B(e])" (=) = oL =) ((L =€) - 20) ] = —wo(1 =) (20) " < 0. (3)
Thus, for sufficiently small e, the perceived marginal benefit of investment is lower
than the marginal cost of reduced consumption; investing a small amount is never op-
timal. Hence, e = 0 is optimal. Moreover, as e; — 1~ the marginal cost of sacrificing
the last unit of consumption explodes; the upper boundary cannot be optimal. Be-
cause the Cobb-Douglas technology 2/ z'* features complementarity between initial
wealth and returns, the marginal benefit of investment rises with z, and large invest-
ment levels become attractive when z, becomes sufficiently large. Consequently, for
B > 1, e = 0is optimal at low wealth, while a positive and interior level of investment

becomes optimal once initial wealth exceeds a threshold 2, > 0. Therefore,

0, if 2o < Zo,
e = v (4)
€ (0, 1) if To 2 i'o.

At low wealth levels, probability weighting leads the individual to perceive in-
vestment as insufficiently rewarding relative to foregone consumption, resulting in

complete underinvestment.

2The second order condition of the problem is given by :
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Unbiased individual. For comparison, consider the case of accurate probability per-

ception. Let e} denote the optimal investment level. Solving (2) for § = 1 yields the

1—7 g
e, =1-— — | (5)
((ﬂf’o‘zl“) )

The second order condition corroborates that in this case the problem is globally strictly

closed-form solution

concave and admits a unique maximizer given by ¢*.> Moreover, investment increases

with initial wealth since:

de:; 1—*}/ 1 (-9 _(a=_4
T =t e ©

Under unbiased probability perception, poorer individuals invest less because re-
turns are smaller when z, is low. The crucial difference is that the unbiased poor
always invest something, whereas the biased poor invest nothing when z, < Z,. Proba-

bility weighting causes poor individuals to mistakenly forgo profitable investments.

Takeaway. If this investment decision were repeated over time, the poor and biased
individual would start the next period with an endowment of 0, further reducing her
incentive to invest. A wealthier but otherwise identical individual would accumulate
wealth, which strengthens the incentive to continue investing. This perpetuation of
the wealth gap arises even though, under accurate probability perception, both indi-
viduals would invest and converge to similar wealth levels.

This simple example captures the core mechanism of the poverty trap developed
in the paper. While individuals from all income levels misperceive probabilities to
the same extent, the consequences of these biases fall disproportionately on the poor.
Because the potential gains from investment are lower for the poor, they are more sus-
ceptible to passing on opportunities due to probability misperceptions. In contrast,
wealthier individuals—though equally biased—may still perceive investment worth-
while. These asymmetric behavioral responses reinforce poverty: the poor do not
invest, earn lower expected returns, and thus remain trapped in a state of economic

disadvantage.

—~y—1

3Ate = e’ and B = 1 the second derivative equals —z3(1 — ) ((1 — €%) - 2o < 0.
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3. Theoretical Framework

This section analyzes decision making under risk, that is when the distribution of re-
turns is objectively known. It shows that the mechanism illustrated in the motivating
example extends to a general theoretical setting. I begin by introducing a two-period
model that formalizes investment behavior under probability weighting. I then em-
bed this environment in a repeated ¢-period setting to study the dynamic implications

for wealth accumulation and the emergence of poverty traps.

3.1. The Two-Period Model

Consider an individual who lives for two periods, t = 0 and ¢t = 1, and who is en-
dowed with an initial level of wealth z € [z, Z|, where x > 0. Att¢ = 0, she allocates a
fraction e € [0, 1] of her wealth to a risky investment, leaving (1 — e)z, for immediate
consumption. The choice of e determines the distribution of future wealth at ¢ = 1.
Let z denote the stochastic return to investment. At the time the individual chooses
e, the realization of z is uncertain and may take any value in the bounded interval [z, Z].
The effect of investment on the distribution of returns is captured by the conditional

cumulative distribution function F'(z|e), which satisfies the following properties:

Assumption 1. The cumulative distribution function F'(z|e) is twice continuously differen-
tiable in e, and satisfies the following properties:
(i) First-Order Stochastic Dominance: F.(z|e) < 0 for all z.
|

|
(i) Diminishing Returns to Investment: F..(z|e) > 0 for all z.

Assumption 1 embodies two properties that are central to the analysis. First, for
an individual endowed with any given level of initial wealth z(, higher investments
strictly dominate lower ones in the sense of first-order stochastic dominance. This
means that the probability of obtaining a high return increases with e. Second, the cu-
mulative distribution function is convex in e, implying diminishing marginal returns
to investment. In the absence of probability weighting, this convexity guarantees that
the optimization problem is well behaved and admits an interior solution (Mirrlees,
1999, Rogerson, 1985).

An immediate implication of Assumption 1 is that when the individual chooses the
lowest investment level, e = 0, obtaining a high return is unlikely but still possible.
This corresponds to an economic environment in which individuals may improve their
outcomes even with a negligible investment. Such a feature may be viewed as unre-
alistic, as it rules out threshold effects, i.e. situations in which a minimum level of in-

vestment is required before improvements become feasible (Dasgupta and Ray, 1986,
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Galor and Zeira, 1993, Bowles et al., 2011b). In Appendix B, I introduce an alternative
specification of the cumulative distribution function that captures these thresholds.
Importantly, the main result of the paper—the emergence of a poverty trap driven by
probability weighting—continues to hold in that more realistic setting.

Future wealth results from the interaction between the return on investment » and
initial wealth x,. This relationship is described by the production function b(zo, 2),

which satisfies the following properties:

Assumption 2. The wealth production function b : [z, Z| x [z, Z] — R™ is twice continuously
differentiable and satisfies the following properties:
(i) Monotonicity: b,,(zo,z) > 0and b,(xg, z) > 0 for all g, z.

(ii) Complementarity: b,,.(xo,z) > 0 for all xo, 2.

(iii) Diminishing returns in initial wealth: b, . (xo, z) < 0 for all z, 2.

(iv) Lower-boundary normalization: b(z, z) = 0 for all z.

(v) Top-region gain: There exists a set H C [z, z| and a constant . > 1 such that b(z, z) >

KT forall z € H.

According to this assumption, final wealth increases with both initial wealth and the
realized return on investment. In addition, the wealth production function exhibits
diminishing returns to initial wealth: the marginal contribution of an additional unit of
initial wealth to final wealth decreases as initial wealth rises. More importantly, initial
wealth and investment returns are complements in generating final wealth: for a given
realization of z, richer individuals achieve higher final wealth. This complementarity
captures the idea that initial wealth amplifies the gains from successful investment
because richer individuals own more capital, face lower barriers to access markets,
or have more influential networks. In fact, the normalization at the lower boundary
ensures that individuals with the lowest initial wealth cannot generate future wealth.
Finally, the top-region gain condition guarantees that investment is on expectation
profitable at high levels of wealth.

I now turn to the individual’s preferences. Choosing a higher level of investment
e reduces utility from immediate consumption but increases the expected utility of

future wealth. This trade-off is captured by the following functional:

E(u(z,e)) = u(zo(l —e)) + (5/: u(b(xo, z))dF(z|e). (7)

The first expression in (7) captures the utility from immediate consumption at ¢ = 0
and the second expression the expected utility of future wealth. The parameter § €
(0, 1] denotes the standard discount factor.

The consumption utility function, u, is assumed to satisfy the following properties:

9



Assumption 3. The consumption utility function u : R — R is twice continuously differ-
entiable and satisfies the following properties:
(i) Monotonicity: v’ (b) > 0 for all b > 0.
(ii) Concavity: u"(b) < 0 forall b > 0.
(iii) Normalization: u(0) = 0.
(iv) Curvature upper bound: For all ), z,
u”(b(xo, z)) bz (To, 2)

- w/(b(zo, 2)) < b.(xo, 2) by (70, 2)

Assumption 3 implies diminishing marginal utility of consumption. Under expected
utility (henceforth EU), this property implies that the individual is risk averse. More-
over, the last condition (curvature upper-bound) ensures that the complementarity be-
tween initial wealth and investment returns (Assumption 2) dominates the diminish-
ing marginal utility of final wealth implied by u (Assumption 3). Hence, individuals
with lower initial wealth experience smaller increases in consumption utility from a
given investment return compared to wealthier individuals. This assumption is stan-
dard in related models, e.g. in Dalton et al. (2016), and is satistied by common func-
tional forms. For instance, with CRRA utility u(b) = b'~7 and Cobb-Douglas technol-

ogy b(zo, z) = xf2'#, the condition reduces to y < 1.

3.2. Probability Weighting Functions and Rank-Dependent Utility

The standard assumption that individuals perceive probabilities accurately is relaxed.
Instead, the decision maker may transform objective probabilities through a probability
weighting function, denoted by w(p). This function captures systematic deviations from
expected-utility and plays a central role in shaping the individual’s risk attitudes. The

following assumption is imposed on w(p):

Assumption 4. Let p € [0, 1]. The probability weighting function w : [0, 1] — [0, 1] is twice
continuously differentiable and satisfies the following properties:
(i) Impossibility and Certainty: w(0) = 0and w(l) = 1;
(i) Monotonicity: w'(p) > 0 forall p € (0,1);
(iii) Inflection Point: For some p € [0, 1], w"(p) < 0if p < pand w”"(p) > 0ifp > p;
(iv) Certainty Effect: if p = 0, lim,,_,o w'(p) > 1 and lim,,_,, w'(p) < 1,
(v) Possibility Effect: if p = 1, lim,,; w'(p) > 1 and lim,_,o w'(p) < 1,
(vi) Certainty and Possibility Effects: if p € (0,1), lim, ,; w'(p) > 1 and lim,,_,o w'(p) >
1; and
(vii) Interior Point: If p € (0,1), then there exists a p € (0, 1) such that w(p) = p.

10



According to the above assumption, the probability weighting function is a strictly
increasing and continuous function that maps the unitary interval onto itself. It always
has two fixed points: one at impossibility, i.e. p = 0, and one at certainty, i.e. p = 1.
Moreover, w(p) can have three possible shapes: concave, convex, or inverse-S, which
are determined by the location of the inflection point j € [0, 1]. It is worth emphasizing
that when the function has the inverse-S shape (because p € (0, 1)) an additional fixed
point is assumed, which I denote by p € (0, 1).

The preferences of the agent with probability weighting are characterized by rank-
dependent utility (henceforth RDU) (Quiggin, 1982):

RDU (u(z,e)) = u(zo(1 —€)) + 5/: u(b(xg, z))d(w(l - F(z|e))). (8)

RDU generalizes expected utility by applying probability weighting to the decumula-
tive function 1 — F'(z|e). Thus, for a given return level Z € [z, 7] and investment level
e’ € [0, 1], the individual considers the rank or probability of obtaining a higher level of
return, given by 1 — F'(Z|e’). This probability is perceived through the weighting func-
tion by w(1 — F(Z|€)). In other words, decumulative probabilities are transformed
using the function w with the properties as described in Assumption 4.

Accordingly, a return infinitesimally lower than Z changes the perceived rank by
d(w(l — F(Z|e ))), which represents the differential of the integral in (8). Hence, in
the RDU framework, the utility derived from obtaining a return Z, denoted u(b(-, 2)),
is weighted by its contribution to the perceived rank d(w(l — F(Z|¢ ))), and these
weighted utilities are integrated over all possible returns z € [z, Z|.

Under RDU, the individual’s risk attitudes are jointly determined by the curvature
of the functions u and w. The risk attitude generated by the curvature of u is common
to EU and RDU, while that generated by the curvature of w is exclusive to RDU. This
influence of probability weighting on risk attitude under RDU is known as probabilistic
risk attitude (Wakker, 1994) and it captures the influence of deviations from expected
utility in decision making under risk. The goal of this model is to study how this

additional source of risk attitude interacts with poverty.

3.3. Motivational and Cognitive Factors of Probability Weighting

To comprehensively investigate the relationship between poverty and probabil-
ity weighting, I follow Wakker (2010) in distinguishing between two distinct types of
probability weighting. The first stems from pessimism and optimism. This type of
probability weighting captures the idea that, when making decisions under risk, the

individual might irrationally believe that unfavorable outcomes, in the case of pes-
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simism, and favorable outcomes, in the case of optimism, realize more often than they
actually do.

Pessimism is represented in the model by a convex probability weighting function,
which assigns greater weight to the probabilities of the lowest levels of return. Con-
versely, optimism is represented by a concave probability weighting function, which
assigns greater weight to the probabilities of the highest levels of return. Figure 1

provides examples of optimism and pessimism.

w(p) - w(p) p
0 p 0 p
(a) Optimism (b) Pessimism

Figure 1: Examples of Optimism and Pessimism

Definition 1. Optimism (Pessimism) is characterized by a weighting function, w(p), with the

properties of Assumption 4 and p =1 (p = 0).

In the analysis below, we examine how the severity of probability weighting, aris-
ing from stronger optimism or pessimism, affects investment behavior. The following
definition, due to Yaari (1987), provides a formal basis for understanding different

degrees of optimism and pessimism.

Definition 2. An agent i with weighting function w;(p) is more optimistic (pessimistic) than
an agent with weighting function w; if w;(p) = 0 (w;(p)) where the function § : [0,1] — [0,1]
is twice continuously differentiable with ' > 0 and 6" < 0 (0" > 0).

We are now in a position to establish how stronger optimism or pessimism influ-
ences risk attitudes. The following remark shows that these components of probability
weighting have opposite effects: stronger optimism makes the individual more risk
seeking, while stronger pessimism makes the decision maker more risk averse. The

proofs of the theoretical results are provided in Appendix A.

Remark 1. For given investment e and initial wealth x levels, stronger optimism (pessimism)

leads to more (less) risk aversion.
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The second type of probability weighting is driven by likelihood insensitivity (Tver-
sky and Wakker, 1995, Wakker, 2010). It captures the idea that individuals misperceive
probabilities due to cognitive and perceptual limitations. These limitations manifest as
extremity-orientedness: individuals are insufficiently sensitive to changes in interme-
diate probabilities, leading them to overweight the probabilities of extreme outcomes,
both best and worst.

I characterize likelihood insensitivity using an inverse-S probability weighting func-
tion (see Figure 2). An individual with such a probability weighting function assigns
excessive probability weight to the probabilities of extreme returns and insufficient

weight to the probabilities of intermediate returns.

w(p) w(p)

0 p 0 p
(a) Extreme likelihood insensitivity (b) Moderate likelihood insensitivity

Figure 2: Examples of likelihood insensitivity

Definition 3. Likelihood insensitivity is characterized by a weighting function, w(p), with the
properties of Assumption 4, together with p = 0.5, and p = 0.5.

The previous definition of likelihood insensitivity assumes that probabilities of in-
termediate outcomes are perceived to be close to 0.5. This property was assumed by
(Quiggin, 1982) and reflects the notion that when assessing the likelihood of inter-
mediate outcomes, the insensitive individual will have a crude perception of these
probabilities as being close to “50-50”"—either the event under consideration happens
or it won't.

It is useful for the analysis to characterize individuals by the severity of probabil-
ity weighting arising from likelihood insensitivity. The following definition, adapted
from Baillon et al. (2025), formalizes this notion: stronger likelihood insensitivity cor-
responds to a probability weighting function with a more pronounced inverse-S shape,

reflecting reduced discrimination of intermediate probabilities.

Definition 4. An individual i with weighting function w; is more likelihood insensitive than
an individual j with weighting function w; if w; = ¢(w;(p)) where ¢ : [0,1] — [0, 1] is twice

continuously differentiable and exhibits the inverse-S shape described in Definition 3.
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The following remark states that an individual exhibiting a stronger degree of like-
lihood insensitivity assigns greater weight to the probabilities of the highest and low-

est returns, and less weight to other probabilities.

Remark 2. If individual i is more likelihood insensitive than individual j in the sense of
Definition 4, then her weighting function exhibits w;(p) > w;(p) for all p € (0,0.5) and
w;(p) < w;(p) forall p € (0.5,1).

Unlike the case of optimism and pessimism, Remark 2 does not specify whether
greater likelihood insensitivity leads to increased risk aversion or risk seeking. In fact,
this effect depends on the distribution of investment returns, F,(z|e). When that distri-
bution is right-skewed, stronger likelihood insensitivity increases risk aversion: more
probability mass is concentrated in low returns, so overweighting the probabilities of
these outcomes amplifies the perceived likelihood of unfavorable outcomes, reducing
the attractiveness of investment. Conversely, when the distribution is left-skewed, the
same bias induces greater risk seeking.

The following lemma presents a key preliminary result. It shows that more severe
probability weighting— whether driven by stronger optimism, stronger pessimism,
or stronger likelihood insensitivity—expands the range of probabilities that are un-
derweighted relative to the EU benchmark.

Lemma 1. For a given investment level e, stronger pessimism, stronger optimism, or stronger
likelihood insensitivity generates a larger set of probabilities for which the probability weighting
function satisfies w'(p) < 1.

Lemma 1 states that, regardless of the type of probability weighting or the risk
attitude it induces, its severity leads the individual to underweight a broader range of
probabilities.

To understand the intuition underlying this result, consider an individual who be-
comes more pessimistic. This increased pessimism raises the weight assigned to the
probability of the lowest return. Because the average slope of the probability weight-

ing function must equal one—since w(0) = 0 and w(1) = 1— we have
/ w'(1 — F(z|e))F.(z|e)dz = 1.

Such greater overweighting of the worst outcome necessarily reduces the weights as-
signed to other outcomes. Consequently, the set of probabilities receiving insufficient
weight, that is less weight than under EU, expands. In this case, this expansion affects

the probabilities of intermediate and high returns. A similar reasoning applies when
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an individual becomes more optimistic or more likelihood insensitive. Under stronger
optimism, underweighting extends to low and intermediate probabilities, while under

stronger likelihood insensitivity it primarily affects intermediate probabilities.

3.4. Probability Weighting and Investment Choice

We are now in a position to examine how probability weighting influences the in-
vestment decision. To do so, I contrast the optimal investment level chosen by RDU
individual with that chosen by an otherwise identical EU decision maker. The follow-

ing proposition characterizes the optimal choice of the EU individual.

Proposition 1. Assume that Assumptions 1-3 hold. The optimal investment level chosen by

the EU individual, e, is unique, interior in the set [0, 1], and increasing in x.

The EU decision maker chooses a strictly positive level of investment. Moreover,
poorer EU individuals invest less than richer ones. This latter property of Proposition 1
is driven by two features of the model. First, the complementarity between initial
wealth and returns to investment (Assumption 2), which reduces the marginal return
to investment for the poor. Second, the bounded curvature of u (Assumption 3), which
guarantees that marginal utility remains sufficiently high at larger wealth levels.

The following result focuses on probability weighting due to pessimism and shows
that sufficiently strong pessimism leads the RDU individual to underinvest relative to
the EU benchmark.

Proposition 2. Assume that Assumptions 1-4 hold and that the individual exhibits pessimism
(Definition 1). The optimal investment level chosen by the RDU individual, e;:

(i) is unique, interior in the set [0, 1], and increasing in x;

(ii) if the individual is more pessimistic than a unique threshold level of pessimism (in the

sense of Definition 2), then e < e}.

The RDU individual with sufficiently strong pessimism underinvests relative to an
EU individual with otherwise identical preferences and initial wealth. This occurs be-
cause pessimism induces greater risk aversion: by assigning disproportionate weight
to the worst outcome, the individual underweights improvements in the probabilities
of favorable returns, thereby reducing her willingness to invest in the risky project.
The degree of pessimism required to generate underinvestment depends on how pro-
ductive the investment is. When investment only modestly increases the probability
of favorable outcomes, even moderate pessimism suffices to reduce optimal invest-
ment. In contrast, when investment substantially improves these probabilities, only

sufficiently pronounced pessimism leads to investment below the EU benchmark.
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We next study how optimism and likelihood insensitivity influence investment.
The following proposition shows that these two forms of probability weighting lead
low-wealth individuals to forgo profitable investments. Hence, they can generate ex-
treme underinvestment, whereby the poor individual chooses not to invest at all even

when the investment is objectively profitable.

Proposition 3. Assume that Assumptions 1-4 hold and that the individual exhibits optimism
(Definition 1) or likelihood insensitivity (Definition 3). There exists a threshold level of initial

wealth Ty € (x, Z| such that the optimal investment level is:

07 l:fl'() S jjOa

1, lfﬂfo > ii'().

The threshold z is strictly increasing in the degree of optimism or likelihood insensitivity.

Optimism leads the individual to assign excessive weight to the probability of the
best outcome and insufficient weight to all other probabilities. The risk-seeking atti-
tude generated by this misperception of probabilities causes her to forgo investments
that improve other favorable, yet more moderate, outcomes. As a result, she forgoes
investments that are profitable on average. The likelihood-insensitive individual mis-
perceives risk in a similar way, and therefore also exhibits a risk-seeking behavior that
leads her to forgo profitable investments. However, unlike the optimist, she also fo-
cuses excessively on the worst outcome. Essentially, this individual would pass over
any opportunity that does not considerably alter the probabilities of extreme returns,
thereby forgoing on investments that would, on average, be profitable.

Because initial wealth amplifies the utility gains from investment (Assumptions 2
and 3), poor individuals—who face smaller payoffs from investment—are more sus-
ceptible to this extreme non-investment behavior. For them, the benefits of invest-
ing are objectively smaller and therefore more easily undervalued under probability
weighting; combined with the risk-seeking distortions induced by optimism or likeli-
hood insensitivity, this makes complete non-investment optimal.

The mathematical rationale behind this result parallels that of the example in Sec-
tion 2. The concavity of the probability weighting function, whether due to optimism
or likelihood insensitivity, introduces non-convexities into the optimization problem.
As a result, the optimal solution often lies at one of the boundaries of the feasible set
0, 1]. Hence, when an investment is undervalued due to probability weighting, the in-
dividual optimally chooses not to invest at all. This stands in contrast to the EU case,

where the absence of such non-convexities yields an interior optimal investment level.
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To conclude this simple two-period model, I present a comparative static that will
be useful for interpreting a set of empirical results. The following corollary shows that
stronger utility curvature—provided it remains within the bounds required by As-
sumption 3—makes individuals with higher initial wealth more susceptible to extreme
underinvestment. Greater curvature steepens the marginal utility cost of foregone con-
sumption, thereby expanding the region in which the distorted marginal benefits from

investment fail to outweigh its immediate utility cost.

Corollary 1. As —% becomes larger, the threshold =, from Proposition 3 increases.
u’ { b(zo,z

3.5. Behavioral Poverty Traps from Probability Weighting

Thus far, we have shown that poverty and probability weighting generate underin-
vestment. However, if this investment behavior only delays wealth accumulation and
leads, in the long-run, to the same equilibrium as that reached by the rich, poverty
would be only transitory. To demonstrate that this is not always the case, and that
the underinvestment due to probability weighting can generate persistent poverty, I
extend the problem to a repeated setting.

Suppose that there are t = 1, ..., T periods. In each period ¢, the agent is endowed
with initial wealth z; and chooses an optimal level of investment e; to maximize her
utility. The stochastic return to the investment made in period ¢, denoted by z, is
drawn from the cumulative distribution function F'(z;|e;) which satisfies the properties
in Assumption 1. Moreover, the future wealth of period ¢ is determined by the func-
tion b(z, ;) with the properties in Assumption 2. Accordingly, future wealth evolves

according to:

Tyiq :/ bz, ze)dF (z¢]er) . )

In words, wealth in ¢ + 1 is determined by the expected benefits from investment in ¢.

Throughout, it is assumed that the agent chooses the optimal e, in each period ¢
to maximize her intertemporal utility over periods ¢ and ¢ + 1. This framework ad-
mits two complementary interpretations. First, the agent can be viewed as myopic,
making decisions in each period about current and next-period wealth without explic-
itly considering subsequent periods. This assumption is consistent with the notion of
isolation, commonly adopted in experimental and behavioral economics when mod-
eling individuals with probability weighting preferences (Cubitt et al., 1998, Hey and
Lee, 2005, Baltussen et al., 2012). It also accords with the idea that individuals who ex-
hibit probability weighting display dynamic inconsistency: even if they form a long-

term investment plan (equivalent to solving the full dynamic optimization problem),
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they are likely to deviate from it because their distorted perception of probabilities
changes the way they evaluate future risks (Karni and Safra, 1990, Gilboa and Schmei-
dler, 1993, Sarin and Wakker, 1998). Alternatively, the framework can be interpreted
in an overlapping-generations (OLG) setting, in which each generation lives for a sin-
gle period, transfers its accumulated wealth to the next, and derives utility from this
bequest. In this interpretation, investment represents the share of resources allocated
to descendants—or equivalently, to the productive capital stock of the next generation.

We turn to characterize the long-run equilibrium when the evolution of wealth
follows the law of motion given in (9). The following proposition shows that under

EU there is a unique steady state.

Proposition 4. Assume Assumptions 1-3 hold. For the EU decision maker, there exists a

unique, interior, and locally stable steady state x},.

Under EU, the optimal investment policy e} is interior and increasing in initial
wealth (Proposition 1). Since higher initial wealth raises the marginal return to in-
vestment, through the complementarity b,,. > 0, next-period wealth increases with
xo. However, at sufficiently high wealth levels, diminishing returns to initial wealth
(bzo.zo < 0) make the wealth-accumulation curve flatten, causing it eventually to grow
more slowly than the 45-degree line x,,1 = x,. Moreover, the same diminishing returns
to initial wealth property, ensures that at low wealth levels, accumulation remains ef-
fective enough that expected wealth rises. These two forces together imply that the
wealth-transition curve crosses the identity line exactly once, yielding a unique steady
state at which expected wealth neither rises nor falls.

Before turning to the long-run equilibria under probability weighting, I introduce
an additional assumption that prevents “free-lunch” growth: it ensures that individu-

als with very low wealth cannot accumulate wealth without investing.

Assumption 5. There exist € > 0 and k < 1 such that for all xy € (z,z + €),
/b(xo,z)dF(z |0) < z + k(xg—2x).

Assumption 5 does not impose any non-convexity or threshold in the production
technology. It simply places a local slope restriction on the wealth transition when in-
vestment is zero: near the lower boundary z, expected wealth cannot grow more than
proportionally to current wealth. The function b remains fully smooth and concave
exactly as specified in the baseline model. The assumption only rules out the knife-
edge case in which zero investment would generate automatic wealth increases for

very poor individuals.
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We are now in a position to demonstrate that probability weighting can generate a
poverty trap. The next proposition demonstrates that when agents exhibit probability
weighting, due to likelihood insensitivity or optimism, their investment behavior can

sustain a low steady state in which the poor perpetuate their condition.

Proposition 5. Assume that Assumptions 1-5 hold and that the individual exhibits either
optimism or likelihood insensitivity. Then there exists a threshold level of initial wealth &, €
[z, T] such that:

(i) if xo < Ty, the steady state is a corner solution at the lower boundary x; = x;

(ii) if xy > Z, the steady state is a high-wealth equilibrium x = g > Zo.

Atlow levels of wealth, small investments are perceived as ineffective at raising the
probability of favorable outcomes. As a result, likelihood-insensitive or optimistic in-
dividuals choose not to invest at all, causing expected wealth to remain low. As wealth
rises, however, investment becomes more effective due to the complementarity be-
tween initial wealth and returns (b,,. > 0), and since higher investment increases suc-
cess probabilities in the sense of first-order stochastic dominance. These two forces—
excessive underinvestment at low wealth and sharply increasing responsiveness at
intermediate wealth—generate an S-shaped wealth transition function M, (x). This
shape implies two stable steady states: a low-wealth poverty trap, in which individ-
uals remain poor because they do not invest, and a high-wealth equilibrium zy in
which continued investment sustains long-run prosperity.

Proposition 5 provides an explanation for the empirical regularity that the poor fre-
quently pass up profitable opportunities. They may misperceive the returns to addi-
tional schooling as too small to justify the cost (Jensen, 2010, Nguyen, 2008), or exhibit
excessive price sensitivity for effective preventive health products (Dupas and Miguel,
2017). In both cases, probability weighting leads them to undervalue investments that
would, on average, improve their future economic prospects.

To conclude the model, it is shown that pessimism does not generate a poverty
trap. Instead, it leads to a unique steady-state equilibrium at a lower level of wealth

than that obtained under expected utility.

Corollary 2. Under the conditions of Proposition 5, suppose instead that the individual ex-
hibits pessimism (in the sense of Definition 1). Then there exists a unique, locally stable steady

state x € [z, T|, which lies strictly below the steady state under expected utility: x} < x.

Sufficiently strong pessimism leads individuals to invest less than under expected
utility. However, unlike optimism or likelihood insensitivity, pessimism does not in-

duce corner solutions: the pessimist still chooses an interior investment level. Con-
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sequently, the investment response remains monotonic—wealth and investment con-
tinue to rise together. This preserves the concavity of the transition map M, (z), ensur-
ing that wealth dynamics converge to a unique, globally stable steady state. Pessimism
therefore reduces long-run wealth but does not generate a poverty trap.

The behavioral poverty trap proposed in this paper is characterized by Proposi-
tion 5. Probability weighting leads poor individuals to forgo profitable opportunities,
causing them to exhibit the lowest investment levels in society and trapping them
in a low steady state. Consequently, despite having opportunities to improve their
condition through profitable investments, the poor ultimately attain the lowest final
expected wealth; their poverty is perpetuated by their erroneous perception of proba-

bilities.

4. Correlational Evidence of the Behavioral Poverty Trap

In this section, I use the experimental data from Dimmock et al. (2021) to evalu-
ate the empirical validity of the poverty trap predicted by the theory. The study by
Dimmock et al. (2021) implemented an incentivized experiment in the American Life
Panel, a representative sample of American households. The original goal of the ex-
periment was to analyze the relationship between household portfolio diversification
and probability weighting. These data therefore provide a unique opportunity to in-
vestigate whether probability weighting is associated with differences in wealth and
income, consistent with the poverty trap mechanism derived in Section 3.

Notably, Dimmock et al. (2021) elicited the probability weighting function for each
respondent using the method of Abdellaoui (2000). This method allows the researcher
to elicit the utility and probability weighting functions in a non-parametric way. This
is achieved by implementing a set of binary lotteries that keep probabilities fixed, in
order to elicit utility function curvature, and another set of binary lotteries that keep
outcomes fixed and vary probabilities, in order to elicit probability weighting function
curvature. Therefore, these data successfully identify these two components of risk
attitude in the case of RDU preferences.

A disadvantage of the elicitation in Dimmock et al. (2021) is that it confounds prob-
ability weighting due to likelihood insensitivity with probability weighting due to pes-
simism/optimism. To deal with this, I fit the respondent’s answers to the questions
designed to elicit probability weighting functions to parametric forms of probability
weighting that can separate and identify these factors. Accordingly, the data are first
titted to Prelec (1998)’s probability weighting function, which is empirically desirable
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because it accounts for changes at small and large probabilities (Wakker, 2010). For-

mally, for each respondent ¢, the following function is estimated:

w(py) = exp (= B = n(py)™). (10)

where the index j represents the questions designed to elicit probability weighting. To
estimate the parameters o; and 3; in (10), I used non-linear least squares, a method that
has been widely used to estimate the parameters of the probability weighting function
(Abdellaoui et al., 2011, Li et al., 2018, Dimmock et al., 2021).

The estimate @; in (10) captures the respondent i’s likelihood insensitivity (Wakker,
2010). In particular, the closer @; is to 0, the more insensitive the respondent is, and,
conversely, a value of ¢; closer to 1 implies a perception of probabilities closer to EU.
Therefore, I use —a; (if @; < 1) as a continuous index of likelihood insensitivity that
I refer to as “Inverse-S.” Furthermore, the estimate 62 in (10) indicates whether re-
spondent i exhibits pessimism or optimism (Wakker, 2010). If §; < 1, the respondent
exhibits optimism, while 3; > 1 indicates pessimism. Additionally, the magnitude of
§; captures the degree of optimism or pessimism: lower values of f3; reflect stronger
pessimism (if B, < 1), while higher values denote stronger optimism (if BZ > 1).

Apart from probability weighting, I also estimate each respondent’s consumption
utility function. The survey questions designed to elicit utility curvature are used to

estimate the following utility function:

() = lek—v (11)

where the index k represents the questions designed to elicit utility curvature. The
parameter +; is estimated using non-linear least squares, jointly with the parameters
of the probability weighting function.

Table 1 presents descriptive statistics of d; and f;.* I find that respondents exhib-
ited likelihood insensitivity and pessimism on average, since the average value of ¢;
is less than 1 and that of §; is greater than 1. Figure 3a illustrates the median prob-
ability weighting function, which is also characterized by pessimism and likelihood
insensitivity.

The aforementioned findings are further corroborated by analyzing the estimates
at the individual level. A majority of respondents, 2012 out of 2640, exhibit a; < 1,

which indicates likelihood insensitivity. Furthermore, a majority of subjects, 1872 out

41t should be emphasized that I applied a 95% winsorization to the estimates of /3; in order to reduce

the effect of outliers. Prior to transforming the data, the mean of Bl was equal 6.148, which is consider-
ably higher than average estimates reported in previous studies. Moreover, the standard deviation of
B; was 27.92, which indicates a considerably high variance.
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of 2640, exhibit BZ > 1, which indicates pessimism. These results are consistent with
previous experimental findings (Abdellaoui, 2000, Abdellaoui et al., 2011, Bruhin et
al., 2010, L'Haridon and Vieider, 2019).

Table 1: Estimates of Probability Weighting Functions

Chateauneuf et
al. (2007)
Q; Bi S; Ci
Mean 0.815 1.855 | 0.594  0.028
25th perc. | 0.361 0.932 | 0.257 -0.118
50th perc. | 0.630 1.411 | 0.611 0.001
75th perc. | 0.972 2.329 | 0.891 0.056
St. Dev. | 1.211 1.550 | 0.358  0.067

This table presents the descriptive statistics for es-
timates of probability weighting obtained at the re-
spondent level. The first two columns present the
descriptive statistics of the parameters when the

Prelec (1998)

form w(p;;) = exp ( - Bi( - ln(pij))ai), due to Pr-
elec (1998), is assumed. Columns 3 and 4 present
the descriptive statistics of the parameters when the

0 ifp=0,
form w(p”) = c; + 8; " Dij lfp S (O, 1),, due to
1 ifp=1.

Chateauneuf et al. (2007), is assumed.

A distinct advantage of these data is that, in previous waves of the ALP, the same
respondents were asked to report their levels of income and wealth. This allows me
to examine the relationship between those responses and the previously discussed
indices of insensitivity and pessimism. Specifically, the analysis incorporates the fol-
lowing variables: “Financial Wealth”, defined as the household’s reported holdings
in bonds, certificates of deposit, treasury bills, checking accounts, savings accounts,
and stocks; “Return Stock”, measuring the household’s reported investment in indi-
vidual stocks and stock mutual funds in retirement accounts; “Family Income”, which
is the household’s self-reported annual income; and “Housing Wealth”, capturing the
household’s reported real estate holdings.

Table 2 presents the descriptive statistics of these variables. All are continuous and
expressed in dollars (or thousands of dollars), and in each case the standard devia-
tion exceeds the mean, indicating considerable dispersion. To stabilize this variability,
I apply a natural logarithmic transformation, following the approach used by Dim-
mock et al. (2016b) and Dimmock et al. (2021). Specifically, I use the transformation
In(y; + 1), where y; denotes the variable under consideration. This transformation not

only reduces the influence of extreme values but also helps mitigate concerns about
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Figure 3: Median probability weighting functions
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Note: The blue lines represent the median probability weighting function in the sample while the
dashed lines represent the accurate perception of probabilities benchmark.

selection on non-zero values, which arise due to the presence of multiple zero ob-
servations. To assess the robustness of the results to alternative transformations, I

also estimate regressions using the quartic-root transformation, i.e. (y;)'/4

, as recom-
mended by Thakral and T6 (2023). This transformation also addresses potential biases

associated with selection on non-zero values.

Table 2: Descriptive Statistics of Income and Wealth

25th  50th 75th

Variable Unit Mean St. Dew. Obs.
Perc. Perc. Perc.

Financial Wealth 1000s USD 139.673 0 2.500 38 1897.933 1954

Return Stock 1 USD 260275.800 30000 114000 350000 439687.8 951

Family Income 1000s USD 76.516 325 67.500 1125 53.350 2659

Housing Wealth  1000s USD  483.909 0 100 250 13054.750 1943

This table presents descriptive statistics for the variables that capture the respondents’ self-
reported income and wealth. The variables are “Financial Wealth” which captures the house-
hold’s self-reported holdings in bonds, certificates of deposit, treasury bills, checking accounts,
savings accounts, and stocks in thousands of US dollars, “Return Stock” which captures the
households self-reported return on individual stocks and stock mutual funds in retirement ac-
counts in US dollars, “Family Income” which captures the household’s self-reported income in
thousands of US dollars, and “Housing Wealth” which captures the household’s self-reported
housing wealth in thousands of US dollars.

Each of the transformed income and wealth variables is regressed on the indexes

of probability weighting. The advantage of running separate regressions, where each
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variable presented in Table 2 serves as the dependent variable in turn, is that these
variables capture different dimensions of income and wealth. Thus, this approach of-
fers insight into the specific contexts where the proposed poverty trap operates. For
example, Return Stock captures income with lower liquidity relative to that included
in Family Income, and might therefore be less relevant in the case of the poorest house-
holds. Similarly, Housing Wealth represents a lower liquidity wealth position relative
to that in Financial Wealth, which, again, might be less important in the case of the
poorest households.

In all regression specifications, I control for the respondents” utility curvature to
isolate the effect of probabilistic risk attitudes on income and wealth. Thus, an empir-
ically relevant relationship between poverty and probability weighting must emerge
above and beyond the average influence of utility curvature. Moreover, in some spec-
ifications, I include other control variables that might moderate the relationship be-
tween probability weighting and income (or wealth), such as the respondent’s age,
gender, ethnicity, level of education, state of residence, spoken language, and employ-
ment status.

Table 3 presents the OLS estimates of the regressions. These results indicate that
higher likelihood insensitivity, as captured by the index Inverse-S, is associated with
lower financial wealth, lower return on stocks, and lower family income. Moreover,
these relationships remain highly significant after the introduction of controls. This
empirical finding is consistent with the model’s prediction that likelihood insensitiv-
ity generates a poverty trap (Propositions 3 and 5). Furthermore, the coefficient on
Inverse-S is not significant when Housing Wealth is used as the dependent variable.
This suggests that, for this measure of wealth, which as mentioned above is less rele-
vant in the case of poorest households, the model’s predictions cannot be empirically
supported.’ Table 10 in Appendix E, shows that these results also hold when quartic-
root transformations are applied to the dependent variable. This indicates that these
findings are not an artifact of the specific transformation used to stabilize variance, but
are robust to alternative transformations.

The estimates presented in Table 3 also indicate that pessimism does not signifi-
cantly affect the respondents” income and wealth. The same conclusion holds when
the quartic-root transformation of the dependent variable is used (see Table 8). This
corroborates the prediction of the model that pessimism does not generate a poverty
trap (Corollary 2).

The aforementioned lack of support for the theoretical predictions under pessimism/optimism

°It must be noted that the same qualitative results are obtained without winsorization (see Table 8 in
Appendix E).
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Table 3: The Relationship between Prelec (1998)’s Probability Weighting Function and
Income or Wealth

(1) ) C) (4) () (6) 7) (®)
Variable y; Financial Financial Return  Return  Family =~ Family Housing Housing
Wealth Wealth Stock Stock Income  Income  Wealth  Wealth
Inverse-S  -1.543*** -1.301*** -1.675"* -1.283*** -0.255"** -0.186™**  -0.278 -0.192
(0.362) (0.324) (0.394) (0.371) (0.060) (0.055) (0.193) (0.170)
Opt./Pess.  -0.005 -0.060 -0.029 -0.096 -0.001 -0.009 0.010 -0.028
(0.092) (0.084) (0.101) (0.097) (0.016) (0.015) (0.049) (0.044)
U. Curv 0.014** 0.013** 0.015**  0.013** 0.001 0.001 0.005 0.004
(0.006) (0.006) (0.006) (0.006) (0.001) (0.001) (0.003) (0.003)
Constant 5.899*** 2178 4.234**  -3.335"* 10.828™* 9.837***  3.288***  -3.187***
(0.238) (1.320) (0.253) (1.262) (0.041) (0.247) (0.126) (0.743)
Controls NO YES NO YES NO YES NO YES
R? 0.014 0.216 0.012 0.129 0.008 0.153 0.002 0.233
N 1902 1901 2245 2244 2629 2628 1921 1920

This table presents OLS estimates of the model In(y; + 1) = by + biInverse-S; + by Opt./Pess.; +
b3U.curv,+Controls,I" + ;. The variable y; captures the respondent’s i self-reported income and wealth. It
can be one of the following variables: “Financial Wealth”, “Return Stock”, “Family Income”, or “Housing
Wealth”. “Inverse-S” is the respondent i’s index of likelihood insensitivity obtained from an estimation of
Prelec (1998)’s probability weighting function. “Opt./pess.” is the respondent’s i’s index of optimism and
pessimism obtained from an estimation of Prelec (1998)’s probability weighting function. “U.curv” is the re-
spondent i’s curvature of the utility function obtained from an estimation of a CRRA utility. Robust standard
errors are presented in parentheses. *** denotes significance at the 0.01 level, ** denotes significance at the 0.05
level, * denotes significance at the 0.1 level.

may stem from the fact that the estimate B; can be confounded by factors other than
pessimism or optimism, such as insensitivity and utility curvature (Gonzalez and Wu,
1999, Abdellaoui et al., 2011, Li et al., 2018). To address this potential identification
problem, I repeat the previous analyses using an alternative parametric form of prob-
ability weighting that is better suited to disentangle optimism and pessimism. In par-

ticular, I assume the neo-additive form proposed by Chateauneuf et al. (2007):

0 if p=0,
w(pij) = S e+ si-py;  ifp € (0,1), (12)
1 ifp=1.

This parametric form is recommended for constructing indexes of pessimism and in-
sensitivity because its parameters have a clean and simple interpretation (Wakker,
2010). I estimate the parameters ¢; and s; in (12) simultaneously with the parameter ~;
in (11) using non-linear least squares.

Columns 3 and 4 in Table 1 present the descriptive statistics of the estimates ¢;
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and §,.° Remarkably, the previous finding that most respondents exhibit insensitivity
and pessimism emerges again when this alternative parametric form of probability
weighting is used. Specifically, respondents exhibit likelihood insensitivity on aver-
age, as indicated by the average estimated value of 3;, which is less than 1. They also
exhibit pessimism on average, since 1 — ¢; + 5; > 0 holds for the average values of
¢; and §;. Moreover, Figure 3b shows that these conclusions also hold for the median
respondent.

Following Wakker (2010) and Abdellaoui et al. (2011), I compute indexes of likeli-
hood insensitivity and pessimism/optimism for each respondent using ¢; and 5;,. To
capture likelihood insensitivity, I use the value —3; if 5, < 1. I refer to this continuous
index of likelihood insensitivity as “Inverse-S.” For optimism and pessimism, I use
the expression 2% which compares how strongly a respondent overweights small
probabilities (associated with the best outcomes) to how strongly they underweight
large probabilities (associated with the worst outcomes).”

Table 4 reports the OLS estimates using alternative indexes of probability weight-
ing as explanatory variables. Consistent with the previous results, higher likelihood
insensitivity is associated with lower financial wealth, lower return on stocks, and
lower family income. Moreover, the relationship between the pessimism index and the
income and wealth measures is also negative and statistically significant, though gen-
erally weaker once control variables are introduced. In particular, greater pessimism is
associated with lower financial wealth, which is particularly relevant for poor house-
holds. For Family Income, I also find a negative and significant relationship; however,
this relationship becomes only borderline significant after including controls, suggest-
ing that the influence of pessimism is less robust and may be partially moderated by
other socio-demographic factors.

Thus, when I use this alternative parametric form of probability weighting func-
tion, I find support for Propositions 3 and 5. Poverty is positively associated with
likelihood insensitivity (i.e., higher insensitivity corresponds to lower wealth and in-
come). Table 11 in Appendix E shows that these results also hold when a quartic-root
transformation of the dependent variable is used. In addition, Table 9 in Appendix E

show that these findings remain robust when a 95% winsorization is applied to the

61t should be noted that I did not apply winsorization to these data. When I apply a 95% winsoriza-
tion to the estimated values of ¢;, which is the analog of the parameter ; in Prelec (1998)’s weighting
function, its resulting mean is 0.0261 and its standard deviation is 0.067, which are very close to the
mean and standard deviation reported in Table 1. Therefore, these data are less likely to produce mis-
leading conclusions due to the presence of outliers.

7 As p approaches zero, the weighting function becomes w(p) = c. In contrast, as p approaches one, it
becomes w(p) ~ 1 = c+ s. Thus, comparing a respondent’s level of optimism to her level of pessimism
is equivalent to computing the difference ¢ — (1 — ¢ — s). The index 25 is a linear transformation of
that difference (Wakker, 2010).
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Table 4: The Relationship between Chateauneuf et al. (2007)’s Probability Weighting
Function and Income or Wealth

(1) ) C) (4) () (6) 7) (®)
Variable y; Financial Financial Return  Return  Family =~ Family Housing Housing
Wealth Wealth Stock Stock Income  Income  Wealth  Wealth

Inverse-S  -1.872"% -1475%* 20220%* -1744** -0305** -0.219* -0.483"  -0.290"
(0.363)  (0.325)  (0.388)  (0.369)  (0.062)  (0.059)  (0.192)  (0.170)
Opt./Pess. -2266"* -1.384*  -1297*  -0.138  -0.409*** -0209* -0.758"*  -0.189
0.673)  (0.621)  (0.697)  (0.672)  (0.117)  (0.111)  (0.361)  (0.326)
U. Curv 0.037 0.020 0.050  -0.055  -0.006  -0.005  0.004  -0.010
(0.040)  (0.038)  (0.042)  (0.041)  (0.006)  (0.005)  (0.022)  (0.019)
Constant  6.414™* 2,624  4195%* -3.642* 10.918"** 0.883***  3.441"*  -3.190***
(0.288)  (1.338)  (0.305)  (1.297)  (0.046)  (0.256)  (0.154)  (0.756)

Controls NO YES NO YES NO YES NO YES
R? 0.017 0.214 0.014 0.129 0.013 0.154 0.005 0.232
N 1902 1901 2245 2244 2629 2628 1921 1920
This table presents OLS estimates of the model In(y; + 1) = by + biInverse-S; + by Opt./Pess.; +

b3U.curv,+Controls,I" +¢;. The variable y; captures the respondent’s i self-reported income and wealth. It can
be one of the following variables: “Financial Wealth”, “Return Stock”, “Family Income”, or “Housing Wealth”.
“Inverse-S” is the respondent i’s index of likelihood insensitivity obtained from an estimation of Chateauneuf
et al. (2007)’s probability weighting function. “Opt./pess.” is the respondent’s i’s index of optimism and pes-
simism obtained from an estimation of Chateauneuf et al. (2007)’s probability weighting function. “U.curv”
is the respondent i’s curvature of the utility function obtained from an estimation of a CRRA utility. Robust
standard errors are presented in parentheses. *** denotes significance at the 0.01 level, ** denotes significance
at the 0.05 level, * denotes significance at the 0.1 level.

estimate ¢;, which is the analog of f3; in Prelec (1998)’s parametric specification. There-
fore, these results are robust to the choice of data transformation.

Overall, the empirical evidence is consistent with the predictions of the model.
Nevertheless, this analysis does not establish causality. The observed correlations
could also reflect an alternative mechanism: individuals, regardless of their initial
wealth, may fall into poverty if they display sufficiently strong probability distortions.
This interpretation contrasts with the model’s conjecture, which posits that poverty
amplifies the effects of probability weighting, causing poor individuals to make sub-
optimal investment choices that reinforce their low-wealth status. The next section

provides causal evidence to more directly test this prediction.

5. Experimental Evidence of the Behavioral Poverty Trap

In this section, I use the data from Carvalho et al. (2016) to provide a causal test of the
model’s predictions. The study by Carvalho et al. (2016) conducted experiments with
two panels of representative U.S. households to examine how financial resources in-

fluence economic decision-making. In both experiments, respondents were randomly
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assigned to one of two groups, with each group completing a survey either shortly
before or shortly after monthly payday. The survey included a battery of questions
eliciting risk and time preferences, as well as measures of decision-making quality.

The elicitation of risk preferences included in Carvalho et al. (2016) does not make
it possible to cleanly identify the probability weighting and utility functions. How-
ever, I recover these preference components from the questions originally designed to
measure decision-making quality. These questions were administered only to partic-
ipants in the GfK KnowledgePanel; accordingly, the empirical analysis in this section
focuses on that sample.

Carvalho et al. (2016) measured decision-making quality using the method of Choi
et al. (2007), which requires respondents to allocate an endowment between two risky
assets. Specifically, respondents choose the fraction of their endowment to invest in
good z;, with the remaining fraction automatically invested in good z,. When mak-
ing this decision, respondents knew that with probability 0.5 only the investment in
21 would yield a return, and with the complementary probability 0.5, only their in-
vestment inz, would yield a return. In total, the survey included 25 such allocation
problems, which varied in the size of the endowment and the amount of investment
that could be afforded in one good relative to the other.®

The participants’ risk preferences were recovered with the Money Metric Index
method of Halevy et al. (2018) (MMI, henceforth). The most important property of
this method for the present analysis, is its ability to recover probability weighting and
utility functions for a given level of decision-making quality. This is because it is based
on a theoretical result that separates a participant’s consistency of choices with re-
spect to the maximization of a non-satiated utility function, which is Carvalho et al.
(2016)’s criterion for decision-making quality, from mispecification, which refers to the
goodness-of-fit of the parametric forms that are assumed to recover risk preferences.
This separation is advantageous for our purposes since it allows us to safely ignore
decision-making quality and focus on risk preferences.

In line with the theoretical model, it is assumed that a participant : makes choices

in each of these questions by maximizing the following utility:

RDU; = w;(0.5) - u; ( max{z1, z2}) + (1 — w;(0.5)) - u; ( min{zq, z2}). (13)

Where w;(1/2) is assumed to have the following parametric form:

8In the jargon of Choi et al. (2007), the relative prices of 1 and x5 were varied across questions.
Thus, the slope of the budget line in the two-dimensional plane differed across questions, and so was
the extent to which one good was cheaper (more expensive) than the other.
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2+ 0
When f; > 0, the probability assigned to the favorable outcome, max{z;, z-}, is un-
derweighted, that is, perceived as smaller than its objective value of 0.5. In this case,
the decision maker underinvests relative to the expected-utility (EU) benchmark due
to this misperception of the probability of the favorable outcome. Conversely, when
Bi < 0, the probability of the favorable outcome is overweighted, leading the decision
maker to overinvest relative to the EU benchmark. Finally, when 3; = 0 the decision
maker maximizes EU.

Consistent with the previous empirical analysis, I also assume that the consump-

tion utility function belongs to the CRRA family:

2 f ;> 0and v; # 1,
w(z) =4 = DS %7 (15)
In(z) ify; >0and -y = 1.

The parameter 7; captures risk aversion due to utility curvature. For the sake of
robustness, I also estimate an alternative model in which consumption utility is as-
sumed to belong to the CARA family. In that specification, I use the parametric form
u;(z) = —exp ( — A;z) where 4; > 0. I apply the MMI method to estimate the param-
eters /3, and ~; for each respondent. I also use this method to estimate the individual-
specific parameters 5, and A; when the model is estimated with CARA utility.

Table 5 provides descriptive statistics of the estimates ¥;, Bi, and A, The average
estimate of f3; is equal to 0.393, which implies that participants perceived the proba-
bility 0.5 to be on average equal to 0.417. This pattern of probability underweighting
is also observed when the consumption utility function is assumed to belong to the
CARA family. In that case, the probability 0.5 is perceived as 0.390. Thus, subjects
on average underweighted the probability of the best outcome and, thus, exhibited
underinvestment relative to the EU benchmark.

The theoretical framework developed in this paper predicts that poverty exacer-
bates the underinvestment arising from probability weighting. To empirically assess
this prediction, I classify each respondent as either an RDU- or EU-maximizer based
on the estimated value of the parameter (3. Specifically, respondent i is classified as
EU if I cannot reject the null hypothesis j3; = 0; otherwise, the respondent is classified

as RDU. This hypothesis test is implemented by constructing 95% confidence inter-

The variable 4; has been winsorized, since it originally included a maximum value of 331, which
lacks clear empirical interpretation, and exhibited a variance of 528, indicating excessive variability in
the data.

29



Table 5: Risk preference estimates obtained from the MMI method

CRRA utility | CARA utility

Bi Vi Bi A;
Mean 0.393 0.515 | 0.566 0.501
25th perc. | 0.102 0.265 | 0.164 0.023
50th. perc. | 0.238 0.399 | 0.341 0.037
75th. perc. | 0.526 0.817 | 0.703 0.067
St. Dev. | 0.608 0.327 | 0.709 2.37

This table presents the descriptive statistics for estimates
of probability weighting and utility curvature obtained for
each participant using the MMI method (Halevy et al,,
2018). The first two columns present estimates obtained
when utility is assumed to belong to the CRRA family, i.e.
zl—’Yi .
ui(z) = { T %f i = 0and 5; # 1, Columns 3 and 4
In(z) ify; >0and~; =1.
present estimates obtained when utility is assumed to be-
long to the CARA family, i.e. u(z) = —exp ( — Az), where
A > 0. Probability weighting is assumed to follow the
parametric form w; = ﬁ with g; > —1.

vals for f3; using a resampling procedure.' I find that the majority of respondents in
the sample exhibit significant probability weighting and can therefore be classified as
RDU. In particular, 622 respondents out of 1131 (55% of the sample) are RDU, while
509 are classified as EU. When assuming a CARA utility function, 682 respondents are
classified as RDU (60% of the sample) and 449 as EU."!

The first analysis of these data relates the classification of risk preferences to indi-
cators of the respondents” economic circumstances. The primary goal of this analy-
sis is to corroborate the empirical patterns observed in the previous section. Specifi-
cally, I examine whether respondents classified as RDU or EU differ in terms of having
below-median expenditures during the last seven days, below-median cash holdings,
and below-median checking and savings balances Essentially, these variables indicate
how the respondent’s economic situation relates to that of others in the sample."?

The regression estimates reported in Table 6 indicate that individuals facing worse
economic circumstances are more likely to be classified as RDU. Specifically, respon-
dents with below-median expenditures and below-median checking and savings bal-

ances are, respectively, 6% and 15% more likely to deviate from EU due to proba-

1Specifically, I generate 1,000 bootstrap resamples of each individual dataset to construct these con-
fidence intervals, following the approach of Halevy et al. (2018).

Tt should be emphasized that the probability p = 1/2 is typically not subject to strong perceptual
distortion (Abdellaoui, 2000). Therefore, the finding that between 55% and 60% of the sample distort
this probability indicates a relatively high incidence of probability weighting.

12The focus on medians follows Carvalho et al. (2016), who report stronger correlations between fi-
nancial circumstances and the treatment (i.e., completing the survey before payday) when using median
regressions.
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bility weighting. Moreover, the point estimate of the relationship between below-

median cash holdings and being classified as RDU is positive but not statistically sig-

nificant. Furthermore, the estimates presented in Table 12 in Appendix E show that

these conclusions remain robust when the sample is restricted to respondents who

reported being in difficult economic circumstances. One of the examined subgroups

includes individuals reporting financial hardship, while another—partially overlap-

ping—subgroup reports experiencing a caloric crunch. Taken together, these results

reinforce the findings of the previous section: probability weighting and poverty, as

reflected in more constrained economic conditions, are positively associated.

Table 6: The Effects of Payday on the Probability of Expected Utility

(1) () (3) (4) ) (6)
RDU RDU RDU RDU RDU RDU
Low Expenditures 0.153** 0.178*
(0.077) (0.082)
Low Cash Holdings 0.072 0.116
(0.078) (0.084)
Low Checkings Balance 0.201** 0.223**
(0.085) (0.089)
i -0.790**  -0.812***  -0.785**  -0.810***  -0.798***  -0.828***
(0.134) (0.137) (0.134) (0.137) (0.134) (0.138)
Varian Index -11.461**  -11.766*** -11.516* -11.845"** -11.451*** -11.818***
(2.005) (2.096) (1.993) (2.084) (1.992) (2.086)
Time Stroop test 0.001 0.001 0.001
(0.004) (0.004) (0.004)
Constant 0.695** 0.199 0.728*** 0.278 0.631*** 0.168
(0.105) (1.413) (0.105) (1.407) (0.123) (1.405)
Controls NO YES NO YES NO YES
Log-likelihood -749.279 720490  -750.827  -721.921  -748411  -719.778
N 1131 1116 1131 1116 1131 1116

This table presents probit estimates of the model RDU,; = by + b;Low Financial Circumstances; + ba9; +
bsBefore Payday x9;+Controls,I"+¢;. The dependent variable “RDU;” is a binary variable that takes a value
1 if respondent i is classified as Rank-Dependent Utility maximizer and 0 otherwise. In Columns (1) and
(2) the variable “Low Financial Circumstances” is a binary variable that takes a value of 1 if respondent ¢
has lower than median expenditures in the past 7 days and 0 otherwise. In Columns (3) and (4) the variable
“Low Financial Circumstances” is a binary variable that takes a value of 1 if respondent i has lower than
median cash holdings and 0 otherwise. In Columns (5) and (6) the variable “Low Financial Circumstances”
is a binary variable that takes a value of 1 if respondent ¢ has lower than median checking and savings
balances and 0 otherwise. The variable 4; captures subject’s ¢ utility curvature. “Varian Index” captures
the extent to which participant’s i responses are consistent with the maximization of a non-satiated utility
function. Time Stroop Test captures the time in seconds that respondent ¢ spent on answering the Stroop
test questions. *** denotes significance at the 0.01 level, ** denotes significance at the 0.05 level, * denotes
significance at the 0.1 level.

I now turn to the second part of the analysis, which examines whether the model’s
predictions can be validated experimentally. Specifically, I test whether respondents

assigned to the treatment group—those surveyed before payday—are more likely to
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make investment decisions that deviate from EU, relative to respondents in the control
group—those surveyed after payday. To this end, I regress the classification of risk
preferences on a treatment indicator labeled “Before Payday.” In all specifications, I
control for utility curvature, captured by the individual estimate 4; in the case of CRRA
utility. In additional specifications, I include further controls to account for individual
heterogeneity: decision-making quality, measured by Varian’s Index (Varian, 1982);
cognitive ability, proxied by the time spent on the Stroop test (administered to the GfK
KnowledgePanel sample); and demographic characteristics, including ethnicity, age,
education, gender, employment status, and occupation type.

Table 7 reports the regression estimates. The results in columns (1), (3) and (5)
indicate that the treatment—being surveyed before payday—does not significantly
increase the likelihood of being classified as RDU. This result remains robust to the
inclusion of control variables. This statistically insignificant relationship is consistent
with the results of Carvalho et al. (2016), who show that temporary financial strain
does not directly affect risk attitudes. I extend their result by showing that such short-
term financial circumstances also do not influence adherence to expected utility.

Recall that the strength of the behavioral poverty trap crucially depends on utility
curvature (see Assumption 3 and Corollary 1). I account for this interplay in the empir-
ical analysis by including an interaction term between the variable Before Payday and
the estimated utility curvature coefficient 4,. The resulting estimates are presented
in columns (2), (4), and (6) of Table 7. The coefficient of the interaction term Before
Payday x7; indicates that being financially constrained, combined with a more con-
cave utility function, increases the likelihood that investment decisions deviate from
the EU benchmark. This conclusion is supported by Figure 4 which presents the av-
erage treatment effect for different values of 4. Furthermore, Table 14 and Figure 6 in
Appendix D confirm that these results are robust to assuming a CARA specification of
consumption utility. Hence, the conclusions are not driven by the particular functional
form of utility adopted.

This empirical result is consistent with Corollary 1. It shows that poverty ampli-
ties the underinvestment arising from probability weighting when the utility function
is sufficiently concave. Intuitively, the poverty trap manifests among participants for
whom the marginal utility of an additional dollar is steep. These individuals experi-
ence a substantial decline in consumption utility before payday, making them more
susceptible to the adverse effects of probability weighting.

The robustness of this interaction between the treatment and utility curvature is
further supported by analyses that restrict the sample to respondents reporting dif-

ficult economic circumstances. The estimates presented in Table 13 in Appendix E
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Table 7: The Effects of Payday on the Probability of deviating from Expected Utility

) (4) ) (6)
RDU RDU RDU RDU
Before Payday -0.026 -0.286** -0.032 -0.315**
(0.076) (0.146) (0.077) (0.147)
o7 -0.792*  -1.055***  -0.817***  -1.099***
(0.135) (0.184) (0.137) (0.185)
Before Payday x#; 0.494* 0.553*
(0.236) (0.238)
Varian Index -11.440**  -11.535"** -11.736™* -11.983***
(2.018) (2.031) (2.059) (2.084)
Time Stroop test 0.001 0.001 0.000 0.001
(0.003) (0.003) (0.004) (0.004)
Constant 0.433 0.406 0.615 0.278
(1.226) (1.225) (1.345) (1.404)
Controls NO NO YES YES
Log-likelihood -741.266  -739.040  -726.804  -720.158
N 1116 1116 1116 1116

This table presents probit estimates of the model RDU; = by + b;Before Payday; + b2%; + bsBefore
Payday x#;+Controls;I" + ¢;. The dependent variable RDU; is a binary variable that takes a value of
1 if respondent i is classified a Rank-Dependent Utility maximizer and 0 otherwise. “Before Payday”
is a binary variable that takes a value of 1 if respondent i is assigned to the group that completed the
survey before payday and 0 otherwise. The variable 4; captures subject’s ¢ utility curvature. “Varian
Index” captures the extent to which participant’s i responses are consistent with the maximization
of a non-satiated utility function. Time Stroop Test captures the time in seconds that respondent i
spent on answering the Stroop test questions. *** denotes significance at the 0.01 level, ** denotes
significance at the 0.05 level, * denotes significance at the 0.1 level.

Prob. RDU

.34

Figure 4: Marginal effects of Payday for different levels of
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Note: Bars represent 95% confidence intervals.




reveal a heterogeneous treatment effect among these subgroups: participants with
sufficiently concave utility functions exhibit a stronger response to the treatment. No-
tably, the degree of curvature required for the treatment effect to reach significance is,
for some subgroups, lower than in the full-sample analysis. Figures 5a and 5b illus-
trate this pattern for respondents reporting having annual incomes below $20,000 and
receiving a single monthly payment. These findings support the interpretation that
the treatment is more pronounced when participants experience a sharper decline in
utility before payday. For individuals facing harsher economic circumstances, a large
utility drop can occur even with less utility curvature, making the treatment effect

detectable at lower levels of utility curvature.

Figure 5: Marginal effects of Payday for different levels of v and Different Subgroups

64 .6

Pr(RDU)
Pr(RDU)

(a) Subgroup Income less than 20,000 USD (b) Subgroup One Payment per Month

Note: Bars represent 95% confidence intervals.

6. Extensions

6.1. Reference Dependence and Poverty Traps

There is substantial empirical evidence suggesting that individuals evaluate risky al-
ternatives relative to a reference point (Kahneman and Tversky, 1979, Tversky and
Kahneman, 1992, Von Gaudecker et al., 2011, Baillon et al., 2020). This way of evaluat-
ing risky alternatives represents a deviation from EU because decision makers display
different risk attitudes toward outcomes evaluated as gains, i.e. outcomes surpassing
the reference point, compared to outcomes perceived as losses, i.e. outcomes that fall
short of the reference point. One of the factors driving this difference is loss aversion,
the notion that losses result in a greater reduction in utility than the increase in utility
from commensurate gains.

I incorporate reference dependence into the model by characterizing individual
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risk preferences using Cumulative Prospect Theory (Tversky and Kahneman, 1992).
For brevity, the full analysis is presented in Appendix C. This extension of the model
demonstrates that under reference dependence the extreme underinvestment behavior
among the poor (Proposition 3), and thus the behavioral poverty trap from Proposi-
tion 5, emerge under similar conditions. The reason is that the components of refer-
ence dependence, loss aversion and diminishing sensitivity, do not restore the global
concavity of the investment problem treated in Section 3 and do not impede poor and
biased individuals from forgoing profitable investments.

Moreover, the extension also shows that loss aversion increases the threshold z,
(Proposition 3). Thus, under reference-dependent preferences individuals with higher
initial wealth will be trapped in a vicious dynamic of low investment and low wealth
accumulation. This result is driven by the assumption that the individual’s reference
point corresponds to the status quo or initial wealth (Terzi et al., 2016, Baillon et al.,
2020). As a result, any positive investment reduces current consumption and is there-
fore evaluated as a loss. Since loss aversion amplifies the disutility from these losses,
the low-wealth region in which individuals with optimism or insensitivity do not in-

vest expands.

6.2. Ambiguity Attitudes and Poverty Traps

The theoretical framework developed in Section 3 can be readily extended to incor-
porate ambiguity attitudes. To do so, I consider a setting in which the probabilities
of returns are ambiguous. In this context, an individual may exhibit either aversion
or preference toward investing in an ambiguous asset relative to an equally profitable
but risky asset (for which probabilities are known). I model this behavior using Source
Theory (Baillon et al., 2025), which posits that under ambiguity, the phenomena of
risk are amplified through additional probability weighting. For example, ambiguity
aversion—manifested as an aversion to invest in the ambiguous asset compared to
the risky one—arises when the individual’s weighting function under ambiguity is
more convex than her weighting function under risk. This increased convexity of the
weighting function makes the individual more pessimistic about favorable outcomes
for the ambiguous investment relative to the risky one.

The full analytical treatment of this extension is provided in Appendix D. Impor-
tantly, because ambiguity attitudes are modeled as additional probability weighting,
the poverty trap characterized in Propositions 3 and 5 emerges under weaker condi-
tions. For instance, an individual who is more insensitive under ambiguity than under
risk, referred to as a-insensitive by Baillon et al. (2018), exhibits a higher threshold z,

(Proposition 3), making her prone to extreme underinvestment even at relatively high
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initial wealth levels zy. As a result, she is more likely to become trapped in the low-
wealth steady state described in Proposition 5.

Overall, this extension shows that when a profitable investment is perceived as
ambiguous, perhaps due to limited familiarity or because it involves technological
innovation, the poor are more likely to forgo it, thereby reinforcing their condition of

poverty.

6.3. Other models of Risk and Ambiguity

Rank-Dependent Utility was chosen to characterize risk preferences because it ac-
counts for probability weighting, and because it provides a flexible framework that
easily allows for extensions to reference dependence (Appendix C) and ambiguity
(Appendix D). However, there are other available models of risk that can account for
probability misperception. For example, disappointment aversion (Gul, 1991), disap-
pointment aversion without priors (Készegi and Rabin, 2006), and prospect reference
theory (Viscusi, 1989). Remarkably, RDU and these models are equivalent for two
outcomes (Wakker, 2010). Therefore, the conclusion of our motivating example in Sec-
tion 2 can also be understood under the lens of those theories.

Another reason for choosing RDU is that it has a close relation to other theories
of decision making under ambiguity. Choquet Expected Utility (Schmeidler, 1989),
which is the cornerstone of Source Theory, coincides for the case of binary outcomes
with the multiple priors model (Gilboa and Schmeidler, 1989) and with the o max-min
model (Ghirardato et al., 2004, Chateauneuf et al., 2007). Hence, the result presented in
Appendix C that ambiguity attitude deepens the behavioral poverty trap, also arises

in the case of binary outcomes when those models are assumed.

7. Conclusion

I introduced a novel poverty trap generated by the individuals” tendency to misper-
ceive objective and ambiguous probabilities. Due to these biases, profitable opportu-
nities are not evaluated accurately, which explain why poor individuals often fail to
exploit investments that would improve their condition. I also demonstrated that the
consequences of these misperceptions are stronger among the poor. Thus, because of

their vulnerable position, they suffer more from their mistakes. The modern approach

13 Accordingly, stronger elation seeking, in the model of Gul (Gul, 1991), or stronger gain seeking, in
the model of (K&szegi and Rabin, 2006), can get in the way of evaluating profitable opportunities and,
subsequently, perpetuate poverty.
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of behavioral economics, and in particular, the tools provided by decision theory have

provided useful for further understanding this behavioral poverty trap.
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A. Proofs of Theoretical Results

FOR ONLINE PUBLICATION ONLY

A.1. Preliminary results and their proofs

Lemma A1l. If agent i is more optimistic than agent j, then w;(p) > w;(p) for all p € (0, 1).

Alternatively, if agent i is more pessimistic than agent j, then w;(p) < w;(p) forall p € (0,1).

Proof. According to Definition 1, w;(p) = 6(w;(p)). Under that equivalence, the fol-

lowing equality holds:
wi(p) _ 6(p) o\ wi(p)
= w,(p) + .
wit) o) " )

Since 0”(p) < 0, the previous equation implies that

wi(p) _ wj(p)
/ < / :
w; wy ()

(p)

Let po, p1 € [0, 1] such that p; > py. Integrate (A.2) over [p, p1] to obtain:

W (s) L wl ()T W) T wllpe)

7

[ gy [y, B0 sl
Po p

Integrating the resulting inequality with respect to py € [0, p1) gives

wj(p1) _ wi(p1)

P1 p1
/ wg(pl)w;(s)ds < / w;- (p1)wi(s)ds <
0 0

Integrating again, but this time with respect to p; € (po, 1] leads to

1y !
/ wJ(S)dS S / w;(s) < ds < w;(po) > w;(po) for any py € (0, 1).
PO Po

w;(s) wi(s)

wi(p1) ~ wi(p1)

(A1)

(A.2)

(A.3)

(A.4)

(A.5)

Similar steps lead to the conclusion that when ¢ is more pessimistic than j, then w;(py) >

w;(po) for any p € (0, 1).

Remark 1

Proof. Using integration by parts, rewrite (8) as:

T

RDU (u(z,e)) = u(zo(1 —€)) + u(b(zo, z)) + / ' (b(zo, 2))bs(wo, 2)w; (1 — F(z]e))dz

T

42

(A.6)



Consider an individual j with probability weighting function w;, and let her suffer
from optimism (Definition 1). Similarly, consider an individual 7 with probability
weighting function w;, and let her be more optimistic than j in the sense of Defini-
tion 2. Using (A.6) it can be established that:

RDU;(u(z,€)) — RDU;(u(z,e)) <

z A7
/ ' (b(wo, 2)) b (w0, 2) (wi(l — F(z]e)) —w;(1 - F(z|e))>dz. (8.7)

According to Lemma Al, it must be that w;(p) > w;(p) for any p € (0,1). Hence,
equation (A.7) implies that RDU; (u(z,e)) > RDU;(u(z,¢)) for given e.
Denote by M; and M, the certain and fixed monetary amounts that make ¢ and
J, respectively, indifferent between investing a fraction e of their initial wealth and
obtaining those monetary amounts. Since RDU;(u(z, €)) — RDU;(u(z,€)) > 0 for all 2
and a given e, it must be that M; > M;. Thus, 7 strictly prefers to invest e and obtain
RDU;(u(z,¢)) over getting M;, whereas j is indifferent between these two choices.
Consequently, ¢ is more risk seeking.
|

Remark 2

Proof. Consider individuals j and ¢ and let them suffer from likelihood insensitivity
in the sense of Definition 3. Let i be more likelihood insensitive than j. According to

Definition 4, w;(p) = ¢(w;(p)). Under that equivalence, the following inequality holds:

wi(p) _ ¢i(p) wj(p)
= —Zw(p) + . (A.8)
wi(p)  ¢i(p) () w}(p)
Since ¢"(p) < 0inp € (0,0.5), then it must be that in that segment:
4 w”
wi(p) 15 (p), (A.9)
wi(p) — wji(p)
Alternatively, if p € (0.5, 1), then, using similar steps, 1:;;,_/((5 )) > Z%l((ﬁ)) .
Let po, p1 € [0, 0.5] such that p; > po. Integrate (A.9) over [po, p1] to obtain:
P10 D1 oyl ’ /
/ wi(s) g </ WS g o 2201 i) (A.10)
o Wi(8) Po wj(5> wj<p0) w;(po)
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Integrating (A.10) with respect to py € [0, p1) gives:

/Opl wi(pr)wj(s)ds < /Opl wi(pr)wi(s)ds < ngii; > Zigﬁi (A.11)

Integrate now (A.11) but this time with respect to p; € [po, 1] gives:

1 ! 1 /
/ w](S)dS - / wz(s)ds < w;(po) > wj(po) for any py € (0,0.5) (A.12)
Po Po

w,(s) w!(s)

Following similar steps it is possible to arrive to w;(py) < w;(po) for any py € (0.5, 1).
|

Lemma A2. An interior solution to the RDU individual’s problem of maximizing investment

is guaranteed under pessimism.

Proof. The second derivative of (A.6) with respect to e gives

u"(a:o<1—e))a;g+/ ' (b, 2)) b (w0, 2) (W) (1= F (21€)) Fee(2]e)—w] (1= F(2]€) ) (Fu(2]e))? )
' (A.13)

A sufficient and necessary condition for an interior solution is that (A.13) is negative.

Since b, (zo, z) > 0 (Assumption 2), v’ > 0, and u” < 0 (Assumption 3), equation (A.13)

indicates that for an interior solution it suffices that:

/x w;»(l — F(zle)) Fee(z]e)dz < /2 w}’(l — F(zle)) (F.(zle))*d=. (A.14)

z

Since w), (1 — F(z|e)) > 0 for all r and e (Assumption 4) and F.(z|e) > 0 forall z and e
(Assumption 1), the inequality given in (A.14) holds under pessimism, which implies
w"(1— F(z|e)) > 0forall zand e. |
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A.2. Proofs of Main Theoretical Results
Lemmal

Proof. Consider individual j with probability weighting function w; and let this indi-
vidual suffer from optimism in the sense of Definition 1. Due to the continuity of w;(p)
for all p, and since lim,, o w(p) > 1 and lim,,; w}(p) < 1 (Assumption 4), there must
exist a probability p, € (0,1) such that wj(py) = 1. Hence, w}(p) > 1if p < p;, and
wi(p) < Lifp > py.

Let individual ¢ with probability weighting function w; exhibit stronger optimism
than j (Definition 2). As in the case of w;, there must exist a p; € (0,1) such that

/

wi(p) > 1if p < p and wi(p) < 1if p < p.. Moreover, according to Lemma Al
w;(p) > w;(p) for all p € (0,1). Thus, the second equivalence in (A.4) when evaluated
at py, implies:

wi(pr) <1 =wj(pr). (A.15)

We now proceed by contradiction. Suppose that p; > py, then wi(p) = 1 < w}(p)
which contradicts the inequality in (A.15). Hence, it must be that p, > p;. The set
p > p, that induces w}(p) < 1, is larger than the set p > p;.Under pessimism, i.e. when
i is more pessimistic than j, the arguments of the proof can be mirrored to obtain the
result that the set p < p; is larger than the set p < py.

]

Proposition 1

Proof. Fix z,. Using integration by parts, the expected utility in (7) can be rewritten as:

E(u(z,€)) = u(zo(l — €)) + u(b(zo, z)) — / ' (b(zo, 2))bs (o, 2) F(z]e)dz.  (A.16)

z

Denote by e, the investment level that satisfies the first-order condition obtained by
differentiating (A.16) with respect to e:

—/ (wo(1 — €}))zo — / u' (b(wo, 2)) b (0, 2) Fo(z]€})dz = 0. (A.17)

z

Step 1 (Existence and interiority). Differentiating (A.16) again with respect to e yields
u" (zo(1 —€k))ag — / ' (b(wo, 2)) s (w0, 2) Fre(z]€]))d 2. (A.18)

Because b, (¢, z) > 0 (Assumption 2), v’ > 0 and v < 0 (Assumption 3), and F..(z |
e) > 0 (Assumption 1), the expression in (A.18) is strictly negative. Thus E[u(z, e)] is
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strictly concave in e, implying that e is unique and interior to [0, 1]. Existence of ¢
follows from concavity of E[u(z, e)], compactness of the choice set, and continuity of
u, b,and F.

Step 2 (Comparative statics in z). Differentiating the first-order condition (A.17) with

respect to zy and applying the implicit function theorem gives:

. u’’ (:z:o(l—e;)) Zo (1—62) —ff u!! (b(:z:o,z)) bz (x0,2)bzq (T0,2)+u’ (b(aco,z)) bzxg (20,2) | Fe(zley,)dz
de} e

dzo u’’ (gco(l—ej;))mg—ff u’ (b(mg,z))bz(xo,z)Fee(z|e;j)dz

(A.19)
According to equation (A.18), the denominator of the right-hand side of (A.19) is neg-

ative. Moreover, the numerator in that equation shows that if
/ u” (b(zo, 2)) b2 (20, 2)byy (T0, 2) + ' (b(20, 2)) bz e (20, 2)dz > 0, (A.20)

then % > 0: the optimal investment level increases with initial wealth. In turn, the

condition in (A.20) holds when

_U”(b<x07 Z)) < bz,l‘o (I'O, Z) VZ To

w(b(zo, 2)) b0, 2) bay (20, 2)

which is implied by Assumption 3. |
Proposition 2

Proof. Fix xy. Consider an RDU individual j with probability weighting function w;,
and let this individual suffer from pessimism in the sense of Definition 1.
Step 1 (Optimal Level of Investment). Denote by ¢ the optimal level of investment.
According to Lemma A2, e} is unique and interior, and satisfies the following first-
order condition (obtained from deriving (A.6) with respect to e):

—u'((1 = ef)wg)xo + / ' (b(xo, 2))b. (20, 2)w) (1 — F(zlef)) Fe(z]ef)dz = 0. (A.21)
Under expected utility (EU), the corresponding optimal investment e, satisfies (A.16).

Step 2 (e is lower than e ). We proceed by contradiction. Suppose that the pessimistic

RDU individual chooses at least as much as the EU individual: e; > e} for all z. Using
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(A.16) and (A.21), this assumption can be expressed as:

— /I ' (b(o, 2)) by (0, 2)wy (1 — F(z\e:))Fe(z|e:)>dz >

— /: u’(b(:vo, Z))bz(x0> ) <Fe(z|eZ)>dz.

Since v’ > 0 and b, > 0, the inequality (A.22) can hold only if

_/"@u—Fuw»n@HMzz—/ Ew%mz

Assumption 1 implies F,.(z | €) > 0, so the assumption e > e} implies:

F.(zle}) > F.(z|e;) for all z = —/ F.(z|lep)dz < —/ F.(z|e;)dz.

Combining (A.23) and (A.24) gives:

T

- [Cw - PGl Rl > = [ Fgelend:

T

& — /: (w;(l — F(zler)) — 1)Fe(z]e:)dz > 0.

Therefore, e} > e can hold only if w’(1 — F(z | e;)) > 1 for most z € [z, Z].

(A.22)

(A.23)

(A.24)

(A.25)

Under pessimism, the weighting function satisfies w}(p) < 1 for most probabilities,

except near the lower tail (p — 0) corresponding to the worst outcomes. Let j be

extremely pessimistic, with

lim w(1 — F(:]e})) f(z]e}) = K.

2=

where K > 1 is arbitrarily large. Since the weighted probabilities must integrate to

one, — [, . wj (1 — F(zler)) f(zler)dz = 1, it follows that

1
—/ wi (1= F(zle})) f(zlep)dz < —.
(z.a)\(z} K
By definition of the cumulative distribution, F.(z | ) = 0, implying:

lim w (1 — F(zle)) Fu(z]ey) = 0.

T
Z—
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Equations (A.26) and (A.27) jointly yield

_ / (1 - F(zleD)) Fulzle)dz < 1. (A.28)

Thus, inequality (A.25) cannot hold, contradicting the assumption that e > e;. Hence,

under sufficiently strong pessimism, e} < e.

Step 3 (stronger degrees of pessimism). Consider now an RDU individual ¢ with
probability weighting function w; and who is less pessimistic than j. According to
Definition 2, w;(p) = 6~ '(w;(p)) where 0 is a convex probability weighting function
with the properties of Assumption 4. Lemma 1 states that decreasing the convexity
of # redistributes probability weight away from z toward higher outcomes, [z, Z|\{z}.
By continuity of w (Assumption 4), there exists an intermediate degree of convexity
such that it holds that e = e;. All individuals more pessimistic than this threshold

weighting function must exhibit e} < e].
Step 4 (comparative static). Differentiating equation (A.21) and applying the implicit
function theorem yields:

der ' (xg(l—ei))m ( ) fl < ( b(xo, z))bz(ro,z)bmo(mo,z)—l—u' (b(mo,z))bzwo(mg,z)>w; (1—F(z|e;))Fe(z|e7’i)dz

dzg

u/! (xo(lfe))ngrf; u! (b(wo,z)) b (z0,2) (w; (17F(z\e)) Fee(zle)—wy (17F(z|e)) (Fe(z|e))2> dz
(A.29)

Lemma A2 shows that the denominator in the right-hand side of (A.29) is negative

.. de* .
under pessimism. Hence, 3= > 0 if

/ u" (b(zo, 2)) b2 (0, 2)bag (20, 2) + U (b(x0, 2)) b,z (w0, 2)dz > 0. (A.30)
The condition in (A.38) holds if — ( oo, Z)) ; bz’zoé‘ro’z) for all z and x,, which is
u ( b(zo0,2) ) =(20,2)bag (z0,2)
ensured by Assumption 3. Hence, g = >0

Proposition 3

Proof. Consider an RDU individual j with probability weighting function w;, and let
her exhibit optimism (Definition 1) or likelihood insensitivity (Definition 2). Accord-
ing to Lemma A2, an interior investment level may not be optimal because w}(p) < 0

for some p € [0, 1]. Hence, € € {0, 1}.
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Let AW (z) :=w(l — F(2|1)) —w(1 — F(z]0)) and

V (o, 2) = 6/36 u' (b(wo, 2)) b (w0, 2) AW (2)d 2. (A.31)

z

The optimal action is:

1, Vixg,z) > u(xg),
er(zo) = { ( )= ulw (A.32)
0, V(zo,z) < u(xg).

Step 1 (Continuity and strict monotonicity of V). By Assumptions 1-3, b, F' and u
are continuous which implies that V' is continuous. Differentiating (A.32) with respect

to z yields

Vo (0, 2) = 5/96 [u” (b(z0, 2)) bs (w0, 2))bay (20, 2) + U (b(20, 2)) bay= (0, 2)) AW (2)d 2.
i (A.33)
Since

u(b(o, 2)) b0 (T0, 2)

- < Vz, xo,

w(b(zo,2)) b0, 2) bay (20, 2)
and because F(z|1) < F'(z]0) (Assumption 1) while w is strictly increasing (Assump-
tion 4), then AW (z) > 0. Therefore V,,(xo, z) > 0 for all z.

Step 2 (Behavior near the lower boundary). By the boundary condition b(z, z) = 0
for all z (Assumption 2), the integral term vanishes at z, hence V(z,2) — u(z) < 0.

Thus el =0atzy = z.

Step 3 (Behavior near the upper boundary). The fact that F'(z|1) < F(z|0) for
all z (Assumption 1) implies the existence of a set H C [z, z] and a constant 7 such
that[ _, F(z|0) — F(z[1) > 7. Since the weighting function is strictly increasing (As-
sumption 4) and continuously differentiable, there exists A > 0 such that w’(p) > A for
all p € [0,1]. Hence, for all z € H,

AW (2) > A(F(2]0) — F(2]1)), (A.34)

and integrating over H gives [,, AW (2),dz > \n.
Next, by the top-region gain property of Assumption 2, there exists a constant

k > 1 such that b(z,z) > kz for all z € H. Let R(Z,r) := “u(g) > 1. Then, the

continuation value at the upper boundary satisfies:
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V(7 2) = 6 / " (b2, 2)) b (2, ) AW (2)d= — u(2)
- (A.35)
> 5/Hu'(b(.7_c, 2))b.(Z, 2) AW (2)dz — u(Z)

Because b(Z, 2) > k% and u is increasing, the last expression in the above equation is

bounded below by
Su(kz) /H AW(2)dz > (SAR(z, k) — 1))u(z) (A.36)

Therefore, if 0AnR(z, k) > 1, then V(Z, z) > u(Z).

Step 4. Existence and uniqueness. We have V(z,z) < 0, V(z) > 0if AnR(Z, k) >
1, and AV strictly increasing in x¢. Suppose that 0AnR(Z, k) > 1, by the intermediate
value theorem there is a unique 7, € (z,z) with AV (zy,2) = 0. Thus e (z) = 0 for
xog < Tg and e} (zg) = 1 for o > Zo. If A\nR(Z,x) < 1, then the existence of 7 is not
guaranteed and e} (zo) = 0.

Step 5. Comparative Static. Step 1 showed that V' (¢, z) > 0. Consider two indi-

viduals ¢ and j and let the former exhibit less optimism (or insensitivity). Let
AWij(z) == w; (1 — F(2[1)) — w; (1 — F(2]0)) — [wj (1—F(z]1)) —w;(1 - F(z!O))]

1-F(2|1)
_ /1 wl(s) — w(s) ds. (A37)

—F(2]0)

Lemma 1 states that optimism and likelihood insensitivity, the weighting function sat-
isfies w’(p) < w}(p) for most probabilities except near the extremes (p — 0 or p — 1).

Thus, stronger optimism or likelihood insensitivity generates
[z.2]\{z,z}

By the definition of a cumulative distribution function:

lgr;lc w} (1 — F(zle})) Fe(zle;) = 0 and llirglz w} (1 — F(zle})) Fe(zle}) = 0. (A.39)

Equations (A.40) and (A.38) jointly yield:

[z.7]
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Therefore, V;(zo, z) and Vj(x, z), the utility (A.32) for ¢ and j respectively, exhibit:
Vi(xo, 2) — Vj(o, 2) < 0. (A41)

Let the change in optimism/insensitivity between ¢ and j be infinitesimal, and define
the difference in utility given in (A.41) in that case as V;;(Zo(¢j), 2;ij). Moreover, since
Vio(xo, 2) > 0, as shown by Step 1, the implicit function theorem gives:

do(ig) _ _ Vig(o(if);ij)

S YD ID L s ), A4
dij Vao (20(i7); 27) (A42)

[
Corollary 1

Proof. Consider pessimism and suppose that it generates e, — e; > 0. Use (A.17) and

(A.21) to rewrite the assumed inequality as:

- /fﬂ ' (b(zo, 2)) ba(z0, 2) <Fe(z|e’;) —wj(1— F(z|e:))F€(z|e:))dz > 0. (A.43)

Since v’ > 0 and b, > 0 (Assumption 3), the condition in (A.43) holds if

_/ (Fe(z\ef) —w}(1 - F(z\e:))Fe(ﬂei))dz > 0. (A.44)
To understand how e}, — e changes with utility curvature, differentiate (A.43) with

respect to b to obtain:

_ /: (u”(b(a:o, z))bz(xo, z) + u’(b(xo, z))%) (Fe(z|e:;) - w;(l — F(z|e:))Fe(z|e:))dz.
: (A.45)

The inequality given in (A.44) and the derivative in (A.45) imply that underinvestment

. u’ (b(xo,z))
becomes more severe among the poor if ————
u’ b(xo,z))

Next, consider optimism or likelihood insensitivity. Equation (A.33) demonstrates

becomes larger.

that if —j;((bb((%;)) becomes larger, then V,(x, 2) becomes less positive. Since V(z, z) <
0 and V(z, 2) ’> 0 if SAnR(Z, k) > 1 then, the value %y € [z, Z] such that V(z,2) =
0 exists, is unique, but takes place at a higher value in the set [z, 7] since V,(o, 2)
increases more slowly with .

Proposition 4
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Proof. Let

M, (xg) := /w b(wo, z) dF (z|€}), (A.46)

and
G(z9) := My(x0) — xo. (A.47)

Step 1 (continuity, monotonicity, and concavity). By Assumptions 1-3, b and F’ are
twice continuously differentiable. From Proposition 1 the optimal choice €] (zo) is in-
terior and increasing in z,. Hence M, and G are continuous in .

Fix any e € [0, 1] and define

H(zo;e) ;:/ b(xo, 2)dF(z|e).

Since, bz, < 0 (Assumption 2), the map =y — b(zo, ) is concave for eachz. The
integral [ b(z¢, z)dF(z]e) is a weighted average of concave functions, and is therefore
concave in .

Differentiating M, (o) = H (xo; €;(20)) twice gives:

2

M/ (20) = Opouo H (w0 €5 (20)) + 2 0o H (w05 €5 (20)) €5 (0) + OeeH (w05 € (20)) (€5 (20)) "

(A.48)
The first term satisfies 0,,,,H < 0 by concavity of H(-;e). Under strict first-order
stochastic dominance, F.. > 0 implies 9..H = — [ b(z,2)dF..(z | ¢) < 0. Finally,
Assumption 2 (complementarity b,,, > 0) implies 0, H = — [ by, (z0,2) dF.(z | €) <0

because F,. < 0. Hence, we have M/ (xy) < 0: M, is concave in .

Step 2 (behavior at the lower boundary). By the normalization b(z,2) = 0 for all 2

(Assumption 2),

Moreover, with b,,, > 0 and €},(z) — 0, accumulation is initially weak: for z, just above
x, M,(zo) < xo and hence G(x() < 0.

Step 3 (growth somewhere). By strict first-order stochastic dominance in e (Assump-

tion 1), there exists a set H C [z, Z] and a constant > 0 such that:

(P = FGle)ds = o

By Assumption 2, there existsx > 1 such that b(z, z) > «Z for all z € H. By continuity

of b in xy, for z close enough to 7 we also have b(xg, 2) > § 29 on H. Therefore, for this
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value of z,

[z aF G i) = [

b(xg,z)dF(z | e}) > g/ dF(z]e}) > Enxo.
H

I 2
Hence,
M, (z0) > 51 0.

Since k > 1, we can (by the choice of H and 7 ensured by strict FOSD) choose x
large enough such that §n > 1, implying M,(z) > 2, and hence G(z¢) > 0, for some
zo € (z,7].

Step 4 (existence, uniqueness, and local stability). Since G(z) < 0 and G(z,) > 0,
continuity of G ensures at least one fixed point. Because M, is strictly concave, G(z¢) =
M, (z) — zo can cross zero at most once, so the steady state x} is unique. At that point,

concavity ensures 0 < M/ (z}) < 1, so the equilibrium is locally (and globally) stable.
|

Proposition 5

Proof. Define i
M, (zo) := / b(wo, z) dF (2 | €(0)). (A.49)

and let x4, = M, (x,) denote the wealth transition map under RDU.
By Assumptions 1-2, b and F’ are twice continuously differentiable. From Proposi-

tion 3, e is a step function with a unique cutoff z,. Hence, M, is continuous in .

Step 1 (Behavior near the lower boundary). The normalization b(z,z) = 0 for all z
implies M, (z) = 0. For individuals with sufficiently low initial wealth, Proposition 3

implies e = 0. In that case,

M, (o) = / b(zo, 2) dF(2]0).
By Assumption 5, there exist e > 0 and & < 1 such that for all zy € (z,2 +¢),
My (zg) < z+k(zg—2z) < z+1-(xg—2z) = .

Hence, near the lower boundary, the transition curve lies strictly below the 45° line,

and wealth decumulates toward z when initial wealth is sufficiently small.

Step 2 (Intermediate and high wealth behavior). As z, increases, the complementar-
ity b,,. > 0 raises the marginal return to investment , increasing the attractiveness of

investing. Beyond the threshold z, (Proposition 3), the individual switches to e = 1.
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Because F, < 0, higher investment shifts the distribution of returns to the right, in-

creasing expected wealth. Given bz, > 0, we then have
MT(ZB()) > X for To > Zo.

The discrete jump in e} (z,) induces a nonconvexity in M,, giving it an S-shaped form

and implying at least two intersections with the 45° line over (z, 7).

Step 3 (Steady states and stability). By construction M, is continuous in [z, z]. From
Step 1, M,(z) — x < 0. From Step 2, there exists x|, € &,z such that M, (z() > xf.
Moreover, for sufficiently large z, sdiminishing returns in initial wealth (bzoz, < 0)

ensure M/ (zg) < 1 and M,(xy) < zo. Hence, M, crosses the 45° line at least twice:
M. (z) —2 <0, M, (z5)—z5>0, M, (z) —z <0.

By the intermediate value theorem, there exist at least two fixed points z, zy € [z, 7]
such that M,.(z1) = xz; and M, (xy) = zg, with z; < xy and.

Local stability follows from the slope criterion of one-dimensional iterative maps:
a fixed point z* is locally stable if and only if |M/(z*)| < 1. At the lower intersection
xr, M,(x;) crosses x4 = x; from below, implying M/ (z;) > 1 and instability. At the
upper intersection zy, 0 < M/ (xy) < 1 due to b,,,, < 0, ensuring local (and global)
stability of z .

Let &y := x1. For any initial condition zy < %, the sequence x;;, = M,(z;) con-
verges to z, whereas for zy > 7, it converges to . Thus, 7, uniquely separates the

basins of attraction of the low- and high-wealth steady states. n
Proposition 6

Proof. Step 1 (Monotonicity/concavity and boundary behavior). The transition func-
tion M, (xz) is given by (A.49). From Proposition 2, the optimal effort e} is unique and
interior in (0, 1). Since b,,,, < 0, F. > 0, and e is bounded, it follows that M (z,) < 0
for sufficiently large z, (eventual concavity). At the lower boundary, b(z, z) = 0 for all
z (Assumption 2), so M, (z) = 0 and hence M, (z) —z < 0.

Step 2 (Pessimism reduces optimal investment and next-period wealth). Under suf-
ficiently strong pessimism, e; < e} for all z, (Proposition 2). Since Fi(z|e) < 0 (strict

FOSD), lower effort shifts the conditional distribution downward, implying
M, (xo) < My(xo)  Vao. (A.50)

Step 3 (Existence and uniqueness of the RDU steady state). Under EU, M, is con-
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tinuous, strictly increasing, eventually concave, and crosses the 45° line exactly once
(Proposition 4), yielding a unique and locally stable steady state x;. From (A.50) and
the shared boundary condition M, (z) = M,(z) = 0, we have

Mr(ﬂfo) — X9 S Mu(mo) — X \V/l'o.

Because M, (xy) — x, is positive for some intermediate wealth (by complementarity)
and negative for large =, (by concavity and M, (z) < 1), continuity of M, ensures that
it too must cross the 45° line at least once. Moreover, since M, is increasing and even-
tually concave, any two distinct crossings would imply a third by the intermediate
value property, which concavity rules out. Hence, there exists a unique fixed point z
such that M, (z}) = z.

Local stability follows from the standard slope condition: at a fixed point, concavity
of M,, the negative term —x¢e}(x), and diminishing marginal improvements in F
imply 0 < M/(z}) < 1, so trajectories of x;.; = M,(z;) converge locally to z.
Step 4 (RDU steady state lies below EU). rom (A.50), M,(zo) < M,(zo) for all x,
with strict inequality on a set of positive measure. Since both maps are increasing and
cross the identity exactly once, the fixed point of the lower map must occur at a lower

wealth level:
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B. Technical Extensions
FOR ONLINE PUBLICATION ONLY

B.1. Production Thresholds

In the main text, the return on investment z is distributed according to the con-
ditional cumulative distribution function F'(z | e), which satisfies F.(z | ¢) < 0 and
F..(z | ) > 0 (Assumption 1). This specification implies that a higher level of in-
vestment increases the probability of obtaining a high return. A disadvantage of this
formulation is that even an individual who invests nothing can have a (possibly small)
probability of achieving very high returns. This is unrealistic in many real-world set-
tings where a minimum level of investment is required before favorable outcomes can
occur. For example, applying an extremely small amount of fertilizer may not increase
crop yields at all; only when a minimum dosage is reached productivity improves.

To capture this feature in model, I modify the return process by introducing a pro-

duction threshold in the distribution of returns.

Assumption 1 (Replacement: Threshold in the return distribution). Let é € (0, 1) and

set the lower wealth bound x = 0. Define the conditional cumulative distribution function:

D(z), if e < é,
G(z]e) = :
F(z|e), ife>é,

where:

e F(- | e) is twice continuously differentiable, satisfies F.(z | ¢) < 0 and F..(z | ) > 0

for all z, and corresponds to the specification in Assumption 1;

* D is the degenerate cumulative distribution function:

0, z<0,
D(z) =
1, z>0.

According to Assumption 1, investments lower than the threshold e < ¢é generate
the lowest return, which for simplicity we set at z = 0. Only when investment exceeds
the threshold (e > é) do nontrivial returns become feasible, and further increases in e

improve the distribution in the sense of first-order stochastic dominance.
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All other assumptions from the baseline model (Assumptions 2-5,) remain un-

changed. Under these assumptions, the utility of the individual is:

u(zo(1 —€)) ife <e.

DU (uz,€)) = u(wo(l —e)) + 5]?“(6(900, Z>>d(w(1 B F(Z’e))> ife=>é.

When e < ¢, the agent derives utility solely from current consumption, as no future
return is obtained. For e > ¢, the decision problem coincides with that of the main
model presented in Section 3.

When e < ¢, the individual only derives utility from current consumption , as
no future return is obtained. For e > ¢, the decision problem coincides with that
of the main model presented in Section 3. The utility of the individual is identical
to that presented in the main text (equation (8)), and the main results of the paper
immediately follow.

The following result shows that the behavioral poverty trap described by Propo-
sitions 3 and 5 emerges when the density function G(z|e) is assumed. Moreover, it
shows that a standard poverty trap can be obtained; that is a situation whereby poor
individuals, who would otherwise not be trapped in poverty, cannot afford to invest

above ¢ and therefore are locked in a low wealth steady state.

Proposition B1. Suppose that Assumptions 1-5, hold. Let e; denote the optimal investment
in the baseline (no-threshold) RDU problem (Proposition 2) and let & be the unique wealth
cutoff from Proposition 3. Then the optimal investment level under the return distribution G
is:

0, if xg < To under optimism or likelihood insensitivity,
0, if eX(xo) < é under pessimism,
er(xo), ifel(xg) > é under pessimism,

1, if o > &y under optimism or likelihood insensitivity.

Moreover, any individual for whom e* = 0 is trapped at the boundary steady state x> = 0.

Proof. If e;* < ¢, then by (B.1), RDU = u((1 — e)zy), which is strictly decreasing in e;
thus, e* = 0. If e;* > ¢, the objective is identical to that in the main model, and there-
fore the results of Propositions 2 and 3 apply directly. Under pessimism, Proposition 2
implies that e is interior in [0, 1. If €}(zo) > ¢, then e* = e}(z(); otherwise, e;* = 0.
Under optimism or likelihood insensitivity, Proposition 3 implies that e} (zy) € {0,1}
depending on whether zy < 2, or zy > 2, leading to the stated result.

Finally, if e* = 0, then from Step 1 from the proof of Proposition 5 we obtain
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M, (z) < xo (Assumption 5) , and from Assumption 2 (b(z, z) = 0 for all z), we have

M, (x¢) = 0. Thus, z} = 0 is an absorbing steady state. [ |

In a setting where a minimum level of investment must be reached before favor-
able outcomes become attainable, a standard poverty trap arises. This occurs be-
cause Assumption 1 introduces a non-convexity in the production technology, a well-
known source of poverty traps (Galor and Zeira, 1993, Bowles et al., 2011b). Such non-
convexity ensures that the poorest individuals, who cannot afford to invest above the
threshold ¢, optimally choose zero investment and thus remain trapped at low wealth
levels. Importantly, this mechanism also implies that pessimistic individuals, who
would otherwise avoid a poverty trap under the baseline model (Corollary 2), become
trapped once the investment threshold is introduced. Furthermore, individuals with
intermediate wealth levels, who can afford to invest beyond ¢, the behavioral poverty
trap described in the main text reemerges: due to optimism or likelihood insensitivity,

they forgo profitable investment opportunities, which will keep them poor.
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C. Reference Dependence

FOR ONLINE PUBLICATION ONLY

This appendix incorporates reference dependence in the model. To that end, I
characterize risk preferences with Cumulative Prospect Theory (Tversky and Kahne-
man, 1992) (CPT henceforth). According to this model, the individual compares future
wealth to her reference point, RP > 0. Wealth levels that fall below the individual’s
reference point are classified as losses while wealth levels above that point are evalu-
ated as gains.

The main departure of CPT with respect to EUT and RDU is that the individual
can exhibit different risk preferences for gains and losses. This is captured with two
ingredients. First, wealth enters the agent’s utility differently depending on whether
they are classified as gains or losses, a property that is captured by the following as-

sumption on the agent’s utility:

Assumption 6. The agent’s value function is the piece-wise function

u(b(zo, z) — RP) if b(xg, z) > RP,
—AMu(RP — b(zo, 2)) ifb(xo,2) < RP.

V(w,r) =

where A\ > 1, RP > 0, and u satisfies the properties of Assumption 3.

In words, utility is assumed to be convex for losses, which generates risk seeking
attitudes, and concave for gains, which generates risk aversion. Furthermore, As-
sumption 6 introduces loss aversion which means that losses loom larger than com-
mensurate gains. This property is captured by the parameter A > 1.

The second ingredient is that the probability weighting function is defined sepa-
rately over gains and losses. Probabilities associated with gains are transformed by
the probability weighting function w, introduced in Assumption 4. On the other hand,
probabilities associated with losses are transformed with a probability weighting func-
tion which I denote by w™ that applies transformations to cumulative probabilities,
F(z]e) rather than to decumulative probabilities.

I simplify the problem by assuming that w™ adopts the properties of w.

Assumption 7. A probability weighting function for losses is a function w~ : [0,1] — [0, 1]
that satisfies the duality condition w=(F(zle)) = 1 — w(1 — F(zle)) forall z.

Throughout, I assume that the reference point, R P, is exogenous to the alternatives

taced by the decision maker. Specifically, it is assumed that the reference point is the
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status quo or the individuals’ initial wealth xy. This reference-point rule which has

received recent empirical support (Baillon et al., 2020).
Assumption 8. The reference point is the individual’s initial wealth RP = x,.

The problem faced by the CPT agent is the same as in the main body of the paper:
she must choose e € [0, 1] to allocate consumption today against investing to derive
expected utility in the future. Accordingly, the utility of an agent with CPT preferences

when

CPT(z,¢e) =u((1 —e)xo) + 5/

b(zo0,2) >0
ol )

We present the solution to the investment problem when the individual exhibits

u(b(a:o, z) — x0>d<w(1 — F(z|e))>—
(C.1)

reference-dependent preferences. It turns out that the result that individuals forgo
profitable investments stated in Proposition 3— which is the basis for the poverty trap
in Proposition C1— holds under similar conditions as compared to the setting in which
the agent exhibits RDU preferences. Intuitively, loss aversion, A > 1, does not restore
the convexity of the problem and thus does not alter the result that investment is at
the corners of [0, 1]. Moreover, the other component that was introduced in this frame-
work, the negative utility of losses, simply rescales utility levels in the loss domain

without changing the curvature of the objective in e.

Proposition C1. Suppose assumptions 1-8 hold. If the probability weighting function w(-)
exhibits optimism or likelihood insensitivity (Definitions 1-3), then there exists a threshold
Zo € [z, T] such that:

0, Ty < ﬂAfo,
1, xy> j?(),

where I is strictly increasing in the degree of optimism or likelihood insensitivity.

Proof. Using Assumption 7 and Assumption 8, rewrite (C.1) as:

CPT(z,e) =u((1 — e)zg) + 6/:0 u(b(xo, z) — x0> dw(1 — F(z|e))

=5 [ a0 = ban,2))d (1= wll - Plele))

0

(C.2)

Using integration by parts, rewrite (C.2) as
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CPT(z,e) =u((1 — e)zg) + 5/ b(xg, z) — :L’g)bz(:co, 2)w(l — F(zle))dz

(C.3)
- 5/ )\u xo — b(zo, 2 ))bz(xo, z)(l —w(l— F(z|e)))dz,
Define the difference in probability weights between full and zero investment:
AW (z) == w(1 = F(z[1)) — w(1 — F(z]|0)).
The net utility gain from investing e = 1 rather than e = 0 is:
AU () := —u(xg) + 9 /i u’<b(x0, z) — x()) b.(xg,2) AW (2)dz (C4)

+6 /:0 Au’(mo — b(xo, z)) b. (g, 2) AW (2) dz.

Let

o

A u’(xo—b(xo, z)) b.(zg,2) AW (2) dz.
(C5)

V(xg) := (5/3C u’(b(:vo, z)—x()) b.(z0,2) AW (2) dz+6/

zo z

The optimal investment rule when e € {0, 1} satisfies

o (z0) 1, V(zo) > u(zo),
’ 0, V(wo) < ulxy).

Step 1 (Corner solutions). Under optimism or likelihood insensitivity, w”(p) < 0 over
a nontrivial interval of p € (0,1). Since CPT(z, ¢) depends linearly on w(1 — F(zle)),
this concavity of w induces non-convexity in e. Thus, interior solutions are dominated

by the corners e € {0, 1}.

Step 2 (Monotonicity of V' (z()). Differentiating V'(z,) with respect to z, gives

Vi) = [ [0 (0) by 100 b AW (2)

where

b(xg, z) — xq if b(xo, 2) > w0,
y =
xo — b(xg, 2) if b(zo, 2) < .

By Assumption 3 (curvature upper bound) and Assumption 2 (complementarity
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by > 0), we have V,, (z9) > 0. Hence, V' (zy) is strictly increasing in initial wealth.

Step 3 (Boundary behavior). Since b(z,z) = 0 < z and b,, > 0 is continuous, there
exists ¢ > 0 such that for all zy € (z,z +¢) and all z € [z, 7] it holds that b(xo, z) < zo.
Thus, the gains region is empty at those levels of 2 and the decision to invest is given
by: i

V(zg) — u(zo) = —u(zo) + 5/x/\ u'(wg — b(zo, 2)) ba (o, 2) AW (2) dz.

The first term is strictly negative, and the integral term is bounded and continuous.
Therefore, for z, sufficiently close to z, V (z) — u(x¢) < 0, so e} = 0.

At high wealth, Assumption 1 ensures strict FOSD in e: there existp > 0 and A, > 0
such that [,; AW (z) dz > A,n for some H C [z, Z]. By Assumption 2, there exists x > 1
with b(z, z) > kz for all z € H. Then

V(Z) > d Anu/ (kT — T) mlII{l b.(T, 2).
zE

If the above inequality holds, then V(z) > u(z) and hence e} = 1 for sufficiently high
Zo.

Step 4 (Existence and uniqueness of the threshold). We have V' (z) < u(z)and V(z) >
uw(z) if S A\yn ' (kT — Z) - min,epy b,(Z, z) > u(z), while V'(zy) > 0. By continuity, there
exists a unique zy € (z,z] such that V(2,) = u(z). Hence, e} = 0 for zyp < Zy and

62 =1 for To > Zp.

Step 5 (Comparative statics). Let i be less optimistic (or less likelihood insensitive)

than j. Define
AWy (2) i= [wi(1=F(2[1)) = wi(1= F(2]0)] = w1~ F(2[1)) = w;(1= F(2]0))].

Lemma 1 implies [ AW;;(z)dz < 0. Since V(xo) is linear in AW (z), then Vi(zo) —
Vi(zo) < 0. Because V,,, > 0 (Step 2), the implicit function theorem yields:

> 0.

d:iO . Vi:)ias(i'())
d(bias) Vo (Z0)

Thus, the wealth threshold z, increases with the degree of optimism or likelihood

insensitivity. |

While loss aversion does not alter the fact that the optimal solution lies at the
boundaries of the investment set [0, 1], it does affect the location of the threshold i
from Proposition C1. The following corollary shows that higher loss aversion increases
this threshold.
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Corollary 3. The threshold level of initial wealth from Proposition C1 is strictly increasing in
)

Proof. Let

O (z0; N) :=4 /xu'(b(xo, z) — ) ba(wo, 2) w(l — F(2 | 1)) dz
O e (C.6)
— (5/ A/(zo — b(zo, 2)) ba(20,2) (1 — w(l — F(z | 1)) dz — u(xy).

By the envelope/monotonicity argument in Step 1 (the proof of Proposition C1), we

have ®,,(xo; A) > 0 at the cutoff: the gain component rises with z, by b,,. > 0, and

bZIO
b=ba,

dampening from concavity of u; the loss component’s zo—effect is (weakly) smaller in

the curvature bound —Z—/,/ <

guarantees that this complementarity dominates the

magnitude and does not overturn positivity.

Differentiating ® with respect to A (holding z, fixed) only affects the loss integral:

T(xo0)
Oy (zo; N\) = — / u'(zo — b(wo, 2)) b(20,2) (1 —w(l — F(z]1))dz < 0,
since v’ > 0,b, > 0,and 1 —w(-) € (0, 1).
The cutoff Z¢(\) is defined by ®(z¢(A); A\) = 0. By the implicit function theorem,
di Da(Zo(A); A)

DD )

because ¢, < 0 and ®,, > 0 at the cutoff. [ |

Loss aversion thus deepens the behavioral poverty trap from Proposition 5, ex-
tending it to individuals with higher initial wealth. Intuitively, loss aversion amplifies
the disutility from outcomes where future wealth falls short of the initial endowment
(b(zo,2) < xo). These states matter most when wealth is low, since even small in-
vestment risks translate into reductions in future wealth. As a result, the low-wealth
region in which individuals optimally choose not to invest expands, making more in-

dividuals more vulnerable to the adverse consequences of probability weighting.
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D. Ambiguity Attitudes and Poverty Traps

FOR ONLINE PUBLICATION ONLY

This Appendix incorporates ambiguity in the model. To that end, I slightly mod-
ify the theoretical framework by considering a setting in which the individual chooses
how much to invest in one of two projects. One of the projects is risky so the probabili-
ties of obtaining a particular level of return are objectively known. The other project is
ambiguous, which means those probabilities are not known. Intuitively, the ambigu-
ous situation may arise when an individual has limited experience with this type of
projects. Notice when the individual chooses a level of investment in the risky project,
the results of the previous section follow which will serve as the benchmark of the
present analysis.

Let [z, z] be the set of possible returns on the ambiguous good. Notice that this set
coincides with the set of possible returns on the risky good discussed in the main body
of the paper. An event is any subset £ C [z, Z]. The set of all possible events in [z, 7] is

denoted by %, which I endow with the Borel o-algebra.

D.1. Ambiguity Attitudes

To define the concept of ambiguity attitudes, let us consider a situation in which
[z, z] be described by the partition { £, E»}. Specifically, let £y be the event z > 2,
where 2 is some return level under the ambiguous project, and let £ be its comple-
ment. Denote by (M, E1; 0, E») a bet that pays the monetary amount M > 0, when E;
is true and nothing otherwise. Abundant empirical research shows that most individ-

uals exhibit the preference :
(M7p7071_p) >~ (M7E1;07E2)7 (Dl)

where p is the objective probability that z > Z realizes under the risky good. The same

individuals also typically exhibit the preference:

The preferences in (D.1) and (D.2) imply an aversion to betting on events gener-
ated by the ambiguous project that violate the normative model of subjective expected

utility (Savage, 1954).!* This ambiguity averse behavior has been documented in promi-

4Pormally, assume without loss of generality that u(0) = 0. Under subjective expected utility, the
preference in (D.1) implies P(E4) - w(M) < p - u(M) < P(E;) < p and the preference in (D.2) implies
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nent laboratory experiments (Trautmann and van de Kuilen, 2015). Moreover, recent
research also shows that when the events under consideration are extreme, individu-
als exhibit ambiguity seeking (Abdellaoui et al., 2011, Baillon et al., 2018, Baillon and
Emirmahmutoglu, 2018). I refer to “ambiguity attitudes” as the conjunction of ambi-
guity aversion and a-insensitivity, which captures the latter empirical regularity that

individuals are ambiguity seeking in the case of unlikely events.

D.2. Ambiguity attitudes and Choquet Expected Utility

One of the most used models to incorporate ambiguity attitudes is the Choquet Ex-
pected Utility (Schmeidler, 1989). In the context of our model, this theory is described
by the functional:

RDU (u(z,¢)) = u((1 —e)z) + 5/

[z,7]

u(b(xo, Z))dW, (D.3)

where W is a function with the following properties: i) W (@e) = 0, ii) W ([z, Z||e) =
1, and iii) W (Eile) < W(Esle) for any Ey, E, € ¥ such that E; C E,. This model
generalizes subjective expected utility by allowing W to be non-additive, a feature
that accounts for ambiguity attitudes by giving up probabilistic beliefs. For instance,
ambiguity aversion (the aversion to invest in the ambiguous project) is incorporated
in this model by assuming that W is convex."”

The main problem of modeling ambiguity attitudes using the model in (D.3) is that
there might be potentially many functions W that can account for an individual’s am-
biguity attitudes (Abdellaoui et al., 2011, Wakker, 2010). This makes the identification
of ambiguity attitudes indeterminate and renders a comparison between choices un-
der ambiguity and choices under risk difficult. I address this problem by adopting
an alternative approach to model ambiguity attitudes known as Source Theory (Abdel-
laoui et al., 2011, Baillon et al., 2025). Under ambiguity in Source Theory, the phenom-

ena of risk are amplified because there is “extra probability weighting.”

D.3. Ambiguity attitudes and Source Theory

To model ambiguity attitudes with Source Theory, we must incorporate probabilis-
tic beliefs into the framework. This is done by assuming that each project generates
an algebra of events, which is called a source. Intuitively, the risky and ambiguous

goods represent distinct random mechanisms, each generating its own set of events

P(E;) < 1 — p. Note that the inequalities P(E;) < p and P(E;) < 1 — p violate probability laws.
15Using the explanation given in the previous footnote, the convexity of W is consistent with the
inequalities W (E;) < 0.4 and W (E>) < 0.6.
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and, thus, each being a source of uncertainty (Tversky and Fox, 1995). A crucial as-
sumption of this theory is that probabilistic beliefs hold within sources of uncertainty
but not between them (Chew and Sagi, 2008). Accordingly, denote by P the probability
measure generated by Y, i.e. the algebra of events generated by the ambiguous good,
and, as before, let F'(z|e) be the probability measure when probabilities are known.
This approach makes it possible to define attitudes toward probabilities of different
sources. In the case of the ambiguous investment, there exists a function w; with the

properties of Assumption 4, such that, for any e:

W (Ele) = ws(1 — P(Ele))for any E € [z, z]. (D.4)

where P(E|e) denotes the individual’s subjective probability belief. The function w;
carries subjective probabilities to decision weights and is referred to as the source func-
tion. Importantly, it can exhibit a different shape than w, the probability weighting
function, and this difference between w, and w identifies ambiguity attitudes, i.e. the
“extra probability weighting.”

For instance, when w, is more convex (concave) than w, the individual exhibits
ambiguity aversion (seeking), i.e. she irrationally believes that unfavorable (favor-
able) events are more likely in the case of the ambiguous project than in the case of
the risky one. Moreover, if w, exhibits a more pronounced inverse-S shape than w, the
decision maker exhibits a-insensitivity, i.e. she erroneously assigns more probability
weight to extreme events in the case of the ambiguous investment than to equally un-
likely events in the case of the risky investment (Baillon et al., 2018). This tendency to
evaluate events in the ambiguous good leads her to be ambiguity seeking for extreme
events.

Substituting (D.4) in (D.3) gives the following evaluation of returns in the case of

the ambiguous investment:

RDU,(u(z,e)) = u((1 —e)zo) + 6 [ ]u<b(x0, z))dws(l — P(zle)) —c(e).  (D.5)
where integration is over the cumulative distribution of P(F|e) transformed by the
source function w,. Notice that equation (D.5) is analogous to (8) for the case of un-
known probabilities. Furthermore, because this equation features the function w,—
which is endowed with the properties of Assumption 4— and due to the regular-
ity conditions imposed on the set ¥, the results presented in Propositions 2 and 3
immediately follow for the ambiguous project. Therefore, a poor individual with a-

insensitivity or ambiguity seeking, forgoes profitable investments that are ambiguous.
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However, the most relevant result of this analysis arises when we compare the op-
timal investment in the ambiguous project for an individual with preferences charac-
terized by (D.5) to the same individual’s investment in the risky good. Proposition D1
states that ambiguity attitudes, regardless of its type, exacerbates the poverty trap de-

scribed in Proposition 5.

Proposition D1. Assume that Assumptions 1-4 hold and that individual preferences un-
der ambiguity are characterized by Source Theory (eq.(D.5)). For an ambiguity seeking or

a-insensitive individual, the optimal level of investment, €}, is

07 Ty < j:aJ

where &, > o, and T is the threshold from Proposition 3. Thus, ambiguity attitudes enlarge

the range of initial wealth levels trapped in poverty as described by Proposition 5.

Proof. Part 1 (Optimal investment choice). Consider an individual j who exhibits
ambiguity seeking or a-insensitivity. Denote her source function by wj;, and her prob-
ability weighting function by w;. The phenomenon of a-insensitivity implies that w,;
has an inverse-S shape that is steeper than w;. Ambiguity seeking implies that w,; is
concave, and to a greater extent than w;. Hence these phenomena can be modeled as
strong likelihood insensitivity and strong optimism. Thus, according to Proposition 3,

the choice of investment in this case is:

07 Ty < j;(u
1, x9> 2,

where z, € (z, 7] is a threshold of initial wealth.

Part 2 (Higher Threshold under Ambiguity) According to Proposition 3, the thresh-
old #, increases in the curvature of w,;. Thus, stronger likelihood insensitivity or op-
timism leads to a higher ;. Since a-insensitivity and ambiguity seeking are modeled
as stronger likelihood insensitivity and stronger optimism, then z, > 2.

Part3 (Poverty Trap under Ambiguity) According to Proposition 5, choosing e} = 0

leads to a low steady state z* = 0. n

Ambiguity attitudes can be interpreted as introducing “extra” probability weight-
ing relative to risk. Thus, an individual who would forgo investing in a risky project,
and as a result be trapped in poverty, would also exhibit the same behavior under

ambiguity, where distortions of probability perception are more pronounced. More
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importantly, the higher threshold z, implies that individuals with initial wealth in
xo € [Zo, 4], who would not be trapped in poverty in a situation of risk, would forgo
equally profitable projects if they are ambiguous. The extra probability weighting im-
plies that more weight is given to probabilities of extreme events under the ambigu-
ous good, leading individuals to erroneously regard the ambiguous investment as less

profitable than the risky one.

D.4. Empirical Evidence Supporting the Poverty Trap due to Ambiguity Attitudes

To conclude this section, I discuss empirical evidence supporting the prediction that
ambiguity attitudes lead to underinvestment, with a disproportionately greater im-
pact on the poor. Dimmock et al. (2016a) designed an experiment to elicit ambigu-
ity attitudes in a representative sample of Dutch households, while Dimmock et al.
(2016b) did so for a representative sample of American households. Dimmock et al.
(2016a) find that a-insensitivity is related to low stock market participation and a lower
level of private business ownership, and Dimmock et al. (2016b) find such relations
for ambiguity aversion. These studies show that ambiguity attitudes generate under-
investment.

Based on two randomized control trials, Bryan (2019) found that ambiguity atti-
tudes lead poor individuals to forgo profitable investments. In the first experiment,
ambiguity-averse farmers in Malawi were less inclined to adopt new crop types when
doing so required the purchase of rainfall insurance. This requirement increased the
ambiguity of the investment, discouraging these farmers from investing, even though
the complementarity between rainfall insurance and the new seed type would gen-
erate higher returns. In the second experiment, ambiguity-averse farmers in Kenya
displayed a similar reluctance to adopt new crop types, even when credit was made
available. Suggesting that the farmers’ reluctance to adopt new technology is driven
by ambiguity attitudes rather than credit constraints.

Finally, Li (2017) demonstrated that poor rural adolescents in China exhibit greater
ambiguity aversion and a-insensitivity compared to their poor urban counterparts.
Given that the rural group is poorer, these findings suggest that ambiguity attitudes
intensify as poverty worsens. This evidence aligns closely with the predictions of the

model.
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E. Additional Empirical Analyses.

FOR ONLINE PUBLICATION ONLY

Table 8: The Relationship between Prelec (1998)’s Probability Weighting Function and

Income or Wealth

(1) 2) ©) (4) () (6) @) 8
Variable y; Financial Financial Return Return Family Family Housing Housing
Wealth Wealth Stock Stock Income  Income  Wealth Wealth
Inverse-S -1.532%*  -1.282***  -1.653*** -1.257*** -0.254*** -0.185***  -0.280 -0.187
(0.363) (0.325) (0.395) (0.371) (0.060) (0.055) (0.193) (0.171)
Opt./Pess. -0.004 -0.005 -0.008 -0.007 -0.000 -0.000 0.000 -0.000
(0.011) (0.012) (0.010) (0.011) (0.002) (0.002) (0.006) (0.006)
U. curv 0.010 0.010 0.007 0.009 0.001 0.001 0.005 0.005
(0.013) (0.014) (0.014) (0.014) (0.002) (0.002) (0.007) (0.008)
Constant 5.900*** 2.127 4.207**  -3.416** 10.827***  9.829***  3.302*** -3.210***
(0.185) (1.314) (0.198) (1.260) (0.031) (0.247) (0.097) (0.743)
Controls NO YES NO YES NO YES NO YES
R? 0.014 0.216 0.012 0.129 0.008 0.153 0.002 0.233
N 1902 1901 2245 2244 2629 2628 1921 1920

This table presents OLS estimates of the model In(y; + 1) =

bp + biInverse-S; + by Opt./Pess.; +

bsU.curv;.+Controls;I" 4 ¢;. The variable y; captures the respondent’s i self-reported income and wealth.
It can be one of the following variables: “Financial Wealth”, “Return Stock”, “Family Income”, or “Housing
Wealth”. “Inverse-S” is the respondent i’s index of likelihood insensitivity obtained from an estimation of
Prelec (1998)’s probability weighting function. “Opt./pess.” is the respondent’s i’s index of optimism and
pessimism obtained from an estimation of Prelec (1998)’s probability weighting function. “U.curv” is the re-
spondent i’s curvature of the utility function obtained from an estimation of a CRRA utility. . Robust standard
errors are presented in parentheses. *** denotes significance at the 0.01 level, ** denotes significance at the 0.05
level, * denotes significance at the 0.1 level.
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Table 9: The Relationship between Chateauneuf et al. (2007)’s Probability Weighting
Function and Income or Wealth

(1) (2) €) (4) () (6) 7) (8)
Variable y; Financial Financial Return  Return  Family =~ Family Housing Housing
Wealth Wealth Stock Stock Income  Income  Wealth  Wealth

Inverse-S  -1.867°** -1471%* 2222°* -1740"* -0.303** -0.218* -0.480"  -0.289"
(0.362)  (0.325)  (0.388)  (0.368)  (0.062)  (0.058)  (0.192)  (0.170)
Opt./Pess. -2273"* -1383**  -1267*  -0.105 -0.404** -0204* -0.752*  -0.181
0.674)  (0.623)  (0.699)  (0.674)  (0.117)  (0.111)  (0.362)  (0.326)
U.curv. 0.037 0.020 0051  -0.056  -0.006  -0.005  0.004  -0.010
(0.040)  (0.038)  (0.042)  (0.041)  (0.006)  (0.005)  (0.022)  (0.019)
Constant 6419  2.621*  4.188°* -3.656** 10.917*** 0.881***  3.441"* -3.193"*
(0.289)  (1.338)  (0.306)  (1.297)  (0.046)  (0.256)  (0.154)  (0.756)

Controls NO YES NO YES NO YES NO YES
R? 0.017 0.214 0.014 0.129 0.013 0.154 0.005 0.232
N 1902 1901 2245 2244 2629 2628 1921 1920
This table presents OLS estimates of the model In(y; + 1) = by + biInverse-S; + by Opt./Pess.; +

b3U.curv,.+Controls/I" +¢;. The variable y; captures the respondent’s i self-reported income and wealth. It can
be one of the following variables: “Financial Wealth”, “Return Stock”, “Family Income”, or “Housing Wealth”.
“Inverse-S” is the respondent i’s index of likelihood insensitivity obtained from an estimation of Chateauneuf
et al. (2007)’s probability weighting function. “Opt./pess.” is the respondent’s i’s index of optimism and pes-
simism obtained from an estimation of Chateauneuf et al. (2007)’s probability weighting function. “U.curv”
is the respondent i’s curvature of the utility function obtained from an estimation of a CRRA utility. Robust
standard errors are presented in parentheses. *** denotes significance at the 0.01 level, ** denotes significance
at the 0.05 level, * denotes significance at the 0.1 level.
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Table 10: The Relationship between Prelec (1998)’s Probability Weighting Function and
Income or Wealth

(1) ) 3) (4) ) (6) @) (8)
Variable y; Financial Financial Return  Return  Family = Family Housing Housing
Wealth Wealth Stock Stock Income Income  Wealth  Wealth

Inverse-S  -0436"* -0370"* 2.867"* 2176 -0.170"* -0.127°* 0235  -0.176
(0.122)  (0.110)  (0.731)  (0.686)  (0.038)  (0.035)  (0.145)  (0.129)

Opt./Pess.  -0.006 0.022  -0014  -0150  -0.001  -0.005  0.013 -0.015
(0.029)  (0.026)  (0.193)  (0.186)  (0.010)  (0.009)  (0.039)  (0.035)
U.curv. 0.004*  0.003* 0028  0.025*  0.001 0.001 0.004 0.003

(0.002)  (0.002)  (0.011)  (0.011)  (0.001)  (0.001)  (0.003)  (0.002)
Constant  1.412°*  0.668* 6902 -8.247** 2735 2112°*  2370*** -2.482%**
(0.076)  (0.389)  (0.465)  (2.096)  (0.025)  (0.148)  (0.093)  (0.572)

Controls NO YES NO YES NO YES NO YES
R? 0.010 0.200 0.011 0.134 0.009 0.142 0.003 0.211
N 1902 1901 2245 2244 2629 2628 1921 1920
This table presents OLS estimates of the model (yi)l/ 4 = by + bnverse-S; + by Opt./Pess.; +

b3U.curv,.+Controls/I" 4+ ¢;. The variable y; captures the respondent’s ¢ self-reported income and wealth.
It can be one of the following variables: “Financial Wealth”, “Return Stock”, “Family Income”, or “Housing
Wealth”. “Inverse-S” is the respondent i’s index of likelihood insensitivity obtained from an estimation of
Prelec (1998)’s probability weighting function. “Opt./pess.” is the respondent’s i’s index of optimism and
pessimism obtained from an estimation of Prelec (1998)’s probability weighting function. “U.curv” is the re-
spondent i’s curvature of the utility function obtained from an estimation of a CRRA utility. Robust standard
errors are presented in parentheses. *** denotes significance at the 0.01 level, ** denotes significance at the 0.05
level, * denotes significance at the 0.1 level.
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Table 11: The Relationship between Chateauneuf et al. (2007)’s Probability Weighting
Function and Income or Wealth

(1) (2) (3) (4) ®) (6) @) (8)
Financial Financial Return  Return  Family = Family Housing Housing
Wealth Wealth Stock Stock Income Income  Wealth  Wealth

Inverse-S 0577 -0456™* -3.775* 2879 -0.191"** -0.139"* -0.376"* -0.237*
0.117)  (0.106)  (0.718)  (0.679)  (0.038)  (0.036)  (0.144)  (0.128)
Opt./Pess. -0.582*  -0337*  -2.145*  0.028  -0253*** -0.133** -0.602**  -0.189
(0.206)  (0.190)  (1.255)  (1.210)  (0.072)  (0.068)  (0.280)  (0.255)
U.curv. 0.009 0.003 0.082  -0.103  -0.004  -0.003  0.002  -0.008
(0.013)  (0.012)  (0.076)  (0.075)  (0.004)  (0.004)  (0.017)  (0.015)
Constant  1.509°*  0.742*  6.890*** -8.840%* 2.793"* 2146"* 2508°* -2.455"*
(0.093)  (0.393)  (0.555)  (2.167)  (0.029)  (0.153)  (0.124)  (0.573)

R2 0.014 0.199 0.012 0.133 0.013 0.143 0.005 0.210
N 1902 1901 2245 2244 2629 2628 1921 1920
This table presents OLS estimates of the model (yi)l/ 4 = by + bnverse-S; + by Opt./Pess.; +

b3U.curv,.+Controls/I" +¢;. The variable y; captures the respondent’s i self-reported income and wealth. It can
be one of the following variables: “Financial Wealth”, “Return Stock”, “Family Income”, or “Housing Wealth”.
“Inverse-S” is the respondent i’s index of likelihood insensitivity obtained from an estimation of Chateauneuf
et al. (2007)’s probability weighting function. “Opt./pess.” is the respondent’s i’s index of optimism and pes-
simism obtained from an estimation of Chateauneuf et al. (2007)’s probability weighting function. “U.curv”
is the respondent i’s curvature of the utility function obtained from an estimation of a CRRA utility. The es-
timates presented in Columns 1-4 do not include additional control variables, and the estimates presented in
Columns 5-8 do include them. Robust standard errors are presented in parentheses. *** denotes significance at
the 0.01 level, ** denotes significance at the 0.05 level, * denotes significance at the 0.1 level.
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Table 12: The Effects of Payday on the Probability of deviating from Expected Utility

@ 2) ®3) (4) ®) (6)
RDU RDU RDU RDU RDU RDU
IHS (Expenditures)  -0.129** -0.172%** -0.129** -0.142** -0.143** -0.121**
(0.051) (0.061) (0.056) (0.056) (0.058) (0.052)
Before Payday 0.084 -0.007 0.007 0.008 -0.033 -0.040
(0.117) (0.131) (0.122) (0.133) (0.124) (0.119)
o0 -1.159***  -0.902*** -0.903*** -1.127*** -1.043*** -0.988***
(0.210) (0.228) (0.208) (0.236) (0.219) (0.210)
Varian Index -12.920***  -9.438*** -13.258*** -13.708***  -10.459*** -9.207***
(3.067) (3.479) (3.137) (3.492) (2.749) (2.956)
Time Stroop test -0.001 -0.001 0.002 -0.004 -0.001 0.003
(0.005) (0.007) (0.007) (0.006) (0.007) (0.006)
Constant 1.419 2.345 1.100 1.881 1.278 0.891
(1.890) (2.556) (2.502) (2.203) (2.444) (2.065)
Subgroup One Financial Ilive from Income < Caloric Could not
payment Hardship paycheckto 20,000 USD  Crunch raise 2000
paycheck for emergency.
Controls Yes Yes Yes Yes Yes Yes
N 547 426 503 425 498 529
Log-Likelihood -339.646  -270.015 -309.805 -261.732 -306.583 -334.629

This table presents probit estimates of the model RDU; = by + b1 IHS(Expenditures)+b,Before Payday; +
bs¥; + bsBefore Paydayx#9;+Controls;I" 4+ ¢;. The dependent variable RDU ; is a binary variable that
takes a value of 1 if respondent i is classified as a Rank-Dependent Utility maximizer and 0 otherwise.
“IHS(Expenditures)” is the Inverse Hyperbolic Sine transformation of the variable Total Expenditures,
which captures the self-reported expenditures of the household in the last seven days. “Before Payday”
is a binary variable that takes a value of 1 if respondent i is assigned to the group that completed the survey
before payday and 0 otherwise. The variable 4; captures subject’s i utility curvature. “Varian Index” cap-
tures the extent to which participant’s i responses are consistent with the maximization of a non-satiated
utility function. Time Stroop Test captures the time in seconds that respondent i spent on answering the
Stroop test questions. *** denotes significance at the 0.01 level, ** denotes significance at the 0.05 level, *

denotes significance at the 0.1 level.

73



‘[9AS] T°0 Y3 ¥e 30uedYTUSIS SIIOUSP ,, ‘[OAS] GO0 Y} J& DULDYIUIIS S9J0UBP ., ‘[OAI] T0'(0 O} 3€ 9OULDYIUSIS S9JOUIP ., ‘SUOTISOND
3593 doong oy Surramsue uo Juads 2 Juspuodsar jeyy spuodas ur swr ayj seanided 3591, doong awir] “uondUNy AJHN PIJLIJES-UOU € JO UOT)eZIUIIXeW
AU} UM Jud)sisuod are sasuodsar ¢ s juedonied yomgm o3 jusixe ay3 saamyded |, xapuf ueries,, -dInjeaind Amn ¢ s,309(qns sainyded % s[qeriea ay[,
astmIay30 () pue AepAed a1oyaq Aoains ayy pajardwod yeyy dnoi8 ayy 03 paulisse st ¢ juapuodsar J1 T Jo anjea e saxe} Jey} a[qeriea Areurq e st , AepAe]
310J9¢,, *9SIMIDYIO () PUe I9ZITWIXew A Juspuada(g-yuey se payIsse[d St ¢ Juapuodsal JI | JO anjeA e saxe} Jey} S[qeLIea Areurq e st ‘(13 S[qeriea
juepuadap ayy, 'z + JisjonuoD+% x AepAeJ a10jogeq + “2q + *Aephe a103ogtq + 09 = ‘N [Ppow a3 Jo sarewnsa jiqoid syuasard a[qe; sy,

9¢q 9¢q 9¢¥ 9G¥ [4°) 43 657 657 N
¢SS ore- 60€°05¢- V1TE€8C-  9C8'88C- 64£C9¢- 196'89¢- ¢04°18¢- 910°%8¢- PoOYIRI[-307]
SHA SHA SHA SHA SHA SHA SHA SHA sjonuo)
JTuaT] JTuaT] samjrpuadxs  sarnjrpuadxa
JIpaId ueTpawl  }IPald uerpawr 000°0C 000°0C uelpawt ueipawt
uey} oMo uey} IOoMOT > JWOdU] > 9WOdU] JUdWARJ U JUSWARJOU(  UBY}JOMOT  UPL)} IOMO] dnoi3qng
(862'1) (96£°1) (0202 (¥802) (899'T) (€eL'T) Craars; (92T
0e8'1 88/°1 LIV'1 420" 0600 €LC0 886°C 08C’¢ juejsuo)
(S00°0) (00°0) (900°0) (900°0) (S00°0) (S00°0) (900°0) (900°0)
200°0- €00°0- 200°0- €00°0- ¥00°0 €000 900°0- £200°0- 3593 doomg awut],
(zeoe) (686'7) (6£2°€) (65C°€) (598°7) (¢¥8°7) (£99°¢) (699°¢)
(29¢0) (20v'0) (€5€°0) (S6€°0)
441660 i 8TET T 8780 " x AepAed a103ag
(982°0) (802°0) (F2e0) (F2c0) (6£2°0) (861°0) (82€0) (¥2C0)
(912°0) (€1T°0) (££2°0) (ST1°0) (902°0) (01T°0) (162°0) (621°0)
1870 €10°0 +:909°0- 950°0 €280 2Iro +F2G0- £90°0- AepAe 210599
nay nay nay nay nay nay nay nay
(8) (2) 9 (S) () () (@ (D)

Aymn peoadxyg woay Sunperasp jo AJIqeqoi ay) uo AepAeJ Jo s309J5q 9T, ‘€T 9[qeL

74



Table 14: The effects of Payday and Utility curvature on being unbiased

(1) (2) (3) (4) ) (6)
RDU RDU RDU RDU RDU RDU
Before Payday 0.014 -0.020 0.015 -0.018 0.038 0.003
(0.075)  (0.077)  (0.075)  (0.077)  (0.077) (0.079)
A -0.013  -0.040** -0.016  -0.043**  -0.018 -0.046™
(0.015)  (0.015)  (0.015)  (0.015)  (0.015) (0.015)
Before Payday x 4, 0.071* 0.069* 0.073**
(0.035) (0.035) (0.034)
Varian Index -2.077 -1.916 -1.722 -1.576
(1.540)  (1.546)  (1.638) (1.641)
Time Stroop test -0.006" -0.006*
(0.004) (0.004)
Constant 0.176=* 0.188* 0.217*** 0.226"*  2.007 2.011
(0.054)  (0.055)  (0.062)  (0.063)  (1.326) (1.321)
Controls NO NO NO NO YES YES
Log-likelihood -772.400 -770.465 -771.496 -769.700 -746.210 -744.160
N 1131 1131 1131 1131 1116 1116

This table presents probit estimates of the model RDU; = by + b;Before Payday; + boA; + bsBefore
Payday x fli+Controls§F + &;. The dependent variable RDU; is a binary variable that takes a value of
one if respondent ¢ is classified as Rank-Dependent Utility maximizer and zero otherwise. “Before Pay-
day” is a binary variable that takes a value of one if responent i is assigned to the group that completed
the survey before payday and zero otherwise. The variable A, is captures subject’s i utility curvature. “
Varian Index” captures participant’s i consistency with the maximization of a non-satiated utility func-
tion. Time Stroop Test captures the time in seconds that respondent i spent on answering the questions
of the Stroop test. *** denotes significance at the 0.01 level, ** denotes significance at the 0.05 level, *
denotes significance at the 0.1 level.
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Figure 6: Marginal Effects of treatment by different levels of A
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FE. Overlapping Generations Model

FOR ONLINE PUBLICATION ONLY

Consider a small open economy in which there is a constant population of agents
with unit mass. Each agent lives for two periods and belongs to a dynasty of overlap-
ping generations connected through capital transfers. Each parent has one parent and
one child, inheriting capital from the former and bequesting capital to the later. Each
agent is a potential capital investor when young, and a producer and consumer when
old.

Agents exhibit preferences defined over old-age consumption, z,;;, from which
they derive a lifetime utility v, = u(z,11). Under EUT the agent’s objective is to maxi-
mize E(u(z::1)). I consider instead a setting in which the agent distorts probabilities
through the probability weighting function from Assumption 4.

In the first period of life, the agent makes a decision about a level of investment
e. As in the motivating example, I consider two levels of investment ey and e;, such
that ey > e;. I assume that there is a fixed cost of investment c(e). For simplicity,
it is assumed that only the high investment level generates a cost, so c(ey) = c and
c(er) = 0 where ¢ > 0.

Since all agents are endowed with zero resources, choosing to invest has to be fi-
nanced with borrowing. Whatever decision is made about investment, I assume that

an agent accumulates capital &, according to
ki1 = B+ ple)Hky + (1 — p(e)) Lk, (E1)

where p(e) is a probability that exhibits p(ey) > p(er), 5 > 0,and 1 > H > L > 0.
Equation (F.1) shows that the agent is more likely to accumulate higher capital when
an investment is made. Note, however, that a high investment does not guarantee
higher capital accumulation. The model incorporates uncertainty about the agents’
future income through uncertainty about productive efficiency.

In the second period, the agent produces output y;,; using capital according to:
Yir1 = Ak (F.2)

where A > 0. The agent realizes a final income of z;; which determines final con-
sumption and utility. This level of consumption depends on the agent’s past actions.
If she abstained from capital investment by choosing e = ¢, then she consumes all

realized output. However, if investment was performed, e = ey, she needs to pay
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back lenders their return on the loan c. Throughout, I assume that agents have access
to competitive financial intermediaries which have access to a perfectly elastic sup-
ply of funds at the world interest rate of r. Since competition between intermediaries
drives their profits to zero, the rate of interest is equal to the intermediaries own cost

of borrowing. All in all, the consumption profile of agents is:

o {A[ﬁ + (H — L)p(er) + L] ife—ep -

A[B+ k(H — L)p(er) + Lk] —c(1+7) ife=ey
Finally, I discuss the agent’s utility. When there is no investment, the agent’s utility
is given by
RDU(e) = AB + A(H — L)kaw(p(er)) + Ak L. (E4)

Under investment, the agent’s utility is given by
RDU(ey) = AB+ Aky(H — L)w(p(en)) + Alk,L] — (1 +7)c (E5)
Thus, the RDU agent will decide to invest as long as
RDU(er) > RDU (e1) ¢ A(H — Lk (w(p(en)) — w(p(er))) = (1 +1)e.  (E6)

The following Proposition characterizes a threshold capital level ksuch that the
agent invests whenever her inherited capital surpasses is larger. I provide such capital

level for the RDU agent and also for her EU counterpart.

Proposition E1. There exist unique capital levels k, > 0 and k. > 0 such that the RDU
agent invests if k, > k, and the EUT agent invests if k, > k.. These capital levels are such that
ke < k. whenever w(p(en)) — w(p(er)) < plen) — pler).

Proof. Fix c. Note that the expression A(H — L)k, (w(p(ex)) — w(p(er))) smoothly in-
creases in k; over the domain [0, +00). Moreover, the expression (1 + r)c is constant in
capital. Therefore, there exists a unique capital level such that (F.6) holds with equality.
Denote by £, the capital level that satisfies the following equality:

A(H = L)k, (w(plen)) —w(p(er))) = (1 +7)e. (E7)

Given that the A(H — L)k, (w(p(en)) —w(p(er))) is increasing in k;, any capital level
such that k, > k, implies RDU (ey) > RDU (ey); the individual engages in investment.
Under expected utility, the benefit from capital investment becomes A(H—L)k;((p(en))—
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(p(er))), which also smoothly increases in k; over [0, +-00). Therefore, there also exists

a unique capital level %, such that
A(H — L)k, (plerr — pler)) = (1 +7)e. (E8)

Suppose that p(ey) — p(er) > w(p(en)) — w(p(er)). Then, using (E.8) it must be that

(1+7)c=A(H — L)k, (p(en) — pler)) > A(H — L)k, (w(plen)) —w(pler))). (E9)

Hence, the capital level k. that guarantees (F.7) must exhibit k, > k..
[ |

The decision to invest in capital is affected by the agent’s probability weighting.
When probabilities are underweighted, the decision to invest is made when capital
is sufficiently high. This behavior generates a behavioral poverty trap: at levels k €
(ke, k,) the decision maker erroneously believes that returns to investment are lower
than they actually are and refrains from investing even though she would choose to
invest if she did not suffer from probability weighting.

Next, I show that stronger deviations from expected utility due to optimism, pes-
simism, or insensitivity decrease the threshold level I%T > 0. Therefore, the segment
under which the agent does not invest due to irrationalities, k¥ € (l%e, l%r), becomes

larger and the behavioral poverty trap happens for a wider range of capital levels.

Corollary D1. Stronger pessimism, optimism, and likelihood insensitivity leads to a lower k,.

It also enlarges the segment in which w(p(ey)) —w(p(er)) < plew) — p(er) holds.

Proof. Lemma 1 shows that stronger optimism, likelihood insensitivity, or pessimism
lead to a larger segment in which w’(p) < 1. In this outcome environment, that condi-

};) ds < w(p(en)) — w(p(er)) < plen) — pler) for

L

e

tion implies that [ ;E(;Lb)[) w'(s)ds < fpp((e
a wider range of values of p(ey) and p(er,).

Since A(H — L)k;(w(p(en)) — w(p(er))) is increasing in k¢, then it must be that
stronger optimism, likelihood insensitivity, and pessimism, through their influence on
reducing the difference w(p(ey)) — w(p(er)), lead to a lower value k, such that (E7)
holds.

]

Given the above, the intergenerational evolution of capital for an individual dy-

nasty satisfies.
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B+ pleg)Hk + (1 —pleg)) Lk, ifk >k,

) (F.10)
B+pler)Hky + (1 —pler)) Lk, ifk < k.

kt+1 =

Each of these lineage transition equations correspond to a stable stochastic difference

equation. The intersections with the 45 degree line are given by the stationary points:

8
kK = EF11

0= plen)(H-1) - L) (E11)
b — g (F12)

(1 —ple)(H - L) - L)

The transition equations are drawn under the restrictions § < 1 —p(ey)(H — L) — L,
which makes the analysis non-trivial.

The long-run distribution of capital in the economy is such that only investors with
capital accumulation are those agents who are endowed with capital levels &y > k.
These agents converge to the high steady-state equilibrium. All other agents who start
off with ky < l%r remain forever as non-investors. Note that agents with l%e > ko > l%T
will not engage in investment even though they would end-up in the high steady state

if they had an accurate perception of probabilities.
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